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Chapter 1 – Introduction 

Social Groups 

The phenomenon of individuals living in groups is prevalent across the animal 

kingdom (Niko Tinbergen, 1990). Social groups are defined as groups of individuals 

which maintain relative spatial proximity over time (A. Ward & Webster, 2016). The 

turnover of individuals forming the group as well as the degree of association amongst 

these individuals can vary from one species to another (A. Ward & Webster, 2016). 

Group structure and cohesiveness depends on the interactions between the 

individuals, with ‘social attraction’ keeping these groups together (Beauchamp, Belisle, 

& Giraldeau, 1997; Fletcher Jr., 2006; Michelena, Sibbald, Erhard, & McLeod, 2009). 

Social groups can vary in size; larger groups like flocks and herds in vertebrates often 

comprise of smaller sub-groups (Aureli et al., 2008; Ramos-Fernández, Boyer, & 

Gómez, 2006; Silk, Croft, Tregenza, & Bearhop, 2014). 

One of the main benefits of group living is the access to information from group 

members about resources like food and mates (Duboscq, Romano, MacIntosh, & 

Sueur, 2016; Morand-Ferron, Doligez, Dall, & Reader, 2010; Valone & Templeton, 

2002; P. Ward & Zahavi, 1973). Individuals in a group need to expend much less 

energy searching for resources than they would have had to if they were searching in 

isolation (Giraldeau & Beauchamp, 1999). Groups can also buffer individuals against 

inter-group and inter-species competition by helping to acquire and defend resources 

(Clark, W. C., & Mangel, 1986). Finally, living in groups can also have anti-predatory 

benefits like an increase in the likelihood to detect predators and a decrease in the 

likelihood to be targeted by them (Treherne & Foster, 1980; A. J. W. Ward, Herbert-

Read, Sumpter, & Krause, 2011; Wrona & Dixon, 1991). 

Intra-group competition for resources is one of the main costs experienced by group 

living individuals. The larger the group size, the lower the amount of resources each 

individual can obtain from a limited source (Pulliam & Caraco, 1984; Wrangham, 

Gittleman, & Chapman, 1993). This in turn might lead to aggression within individuals 

in the group and further costs associated with it (Dubois, Giraldeau, & Grant, 2003; C. 

A. Johnson, Grant, & Giraldeau, 2004). In groups with strong dominance hierarchies, 
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subordinate individuals face costs related to limited opportunities for reproduction 

(Kleshchev & Osadchuk, 2014; von Rueden & Jaeggi, 2016). Further, larger or more 

dense groups may be more likely to be targeted by predators, thereby reducing some 

of the benefits associated with group living in species which are at a lower trophic-

level (Curley, Rowley, & Speed, 2015; Fedigan, 1983; N. Tinbergen, Impekoven, & 

Franck, 1967). An increased likelihood of exposure to pathogens is another cost of 

group living (Loehle, 1995; Nunn, Jordan, McCabe, Verdolin, & Fewell, 2015). 

Group living animals often engage in collective decision making, in which individuals 

have to incorporate environmental and social cues to make behavioural decisions 

(Sumpter, 2010). Collective behaviours are an emergent property of the group and 

arise from very local interactions between the individuals (Giardina, 2008). For 

example, in groups of starlings flying together, each individual interacts with only a 

few individuals in the space around them (Ballerini et al., 2008; Czirók, Vicsek, & 

Vicsek, 1999). These interactions are sufficient to produce cohesion within a group 

and lead to their synchronous large-scale flocking behaviour (Cavagna et al., 2015, 

2014). By synchronising their behaviours, individuals remain part of the group, and 

thus collective behaviour is intricately associated with the benefits and costs of living 

in groups.  

Eusociality 

Eusocial groups represent one of the most elaborate forms of group living and are 

characterised by reproductive division of labour, the presence of multiple generations 

within the group, cooperative care of younger members of the group and a point of 

no-return to the solitary state as a consequence of anatomical differentiation of the 

non-reproductive members (Crespi & Yanega, 1994; E O Wilson, 1971; Edward O. 

Wilson & Hölldobler, 2005). Compared to most social groups, eusocial groups are 

made up of closely related individuals who are spatially together throughout their lives 

with very little turnover of group members (Hölldobler & Wilson, 2009; Jarvis, 1981). 

Colonies in eusocial species are typically made up of a large number of individuals 

most of whom are sterile. These workers show a further division of labour and 
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partition all the tasks necessary for the maintenance of the colony amongst themselves 

(Hölldobler & Wilson, 2009; O’Riain, Jarvis, Alexander, Buffenstein, & Peeters, 2000). 

The advantages of eusociality is reflected in the large biomass of eusocial groups 

amongst insect species, even though they only make up a tiny fraction of the total 

number of insect species (Edward O. Wilson & Hölldobler, 2005). Rapid and efficient 

foraging as well as defensive capabilities against competitors based on disposable 

workers allow these groups to thrive in a wide variety of environments (Hölldobler & 

Wilson, 2009). The main cost associated with eusocial groups can be hypothesised to 

be the large number of social cues and signals necessary to effectively organise the 

different worker groups (Leonhardt, Menzel, Nehring, & Schmitt, 2016; Seeley, 1998; 

Wittwer et al., 2017). In such groups, collective decision making, and associated 

behaviours, directly benefit the colony rather than the individual (Hölldobler & 

Wilson, 2009; Sober & Wilson, 2011; Edward O. Wilson & Hölldobler, 2005). 

Social organisation in Honey bees 

Eusocial honey bee colonies are made up of workers which show an age-dependent 

non-reproductive division of labour (Robinson, 1992; Seeley, 1982). Younger workers 

are engaged in tasks within the hive, like brood care and comb construction 

(Hepburn, 2007; Robinson, 1992), while older workers are engaged in tasks outside 

the hive, like guarding and foraging (A. J. Moore, Breed, & Moor, 1987; Tenczar, Lutz, 

Rao, Goldenfeld, & Robinson, 2014; Visscher & Seeley, 1982). This division of labour 

has been extensively studied in Apis mellifera, and is regulated by strong physiological 

changes in the workers which in turn changes their behavioural responses to the 

various stimuli they experience (D. Moore, Angel, Cheeseman, Fahrbach, & Robinson, 

1998; Robinson, Grozinger, & Whitfield, 2005; Robinson & Vargo, 1997). There is a 

certain degree of flexibility in the division of labour, with individuals able to rapidly 

change their work profile (from in-hive tasks to foraging and vice-versa) in response to 

abrupt changes in the colony’s need (Z.-Y. Huang & Robinson, 1996; Z. Huang & 

Robinson, 1992; B. R. Johnson, 2010a).  

Task allocation is a self-organised process in these colonies, with positive and negative 

feedback between different worker groups acting on age polyethism (B. R. Johnson, 
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2010a, 2010b; Seeley, 1982). Since the various stimuli experienced by an individual 

worker is always a subset of the stimuli that the colony needs to respond to, workers 

have to incorporate information from the cues and signals produced by other 

individuals into their behavioural responses (Grüter & Keller, 2016; Kocher & Cocroft, 

2019). Cues refer to information obtained by individuals from either the environment 

or as a by-product of the action of other individuals in the group and are under no 

natural selection (Bradbury & Vehrencamp, 2011). Signals refer to mechanisms of 

information transfer between two individuals that are under natural selection (Seeley, 

1998). Signals would therefore be costly, but contain relatively more appropriate 

information than cues, which may be more prevalent but context dependent. Both 

cues and signals can change the workers stimulus threshold for task initiation, the 

probability of task performance and also the intensity of the task performance 

(Beshers & Fewell, 2001; Beshers, Huang, Oono, & Robinson, 2001; Naug & Gadagkar, 

1999; Weidenmüller, 2004). The division of labour in eusocial insect colonies is based 

on the interplay between individual response thresholds, social cues and signals and 

environmental conditions (Beshers & Fewell, 2001). 

Foraging and Recruitment 

Honey bee colonies need to gather a large amount of pollen and nectar on a daily 

basis, and hence foragers form a large proportion of the workers in the colony 

(Khoury, Barron, & Myerscough, 2013; Seeley, 1995; C Thom, Seeley, & Tautz, 2000). 

Foragers can be divided into scouts and recruits similar to producers and scroungers 

in other social groups (Aplin & Morand-Ferron, 2017; Page, Sweeney, Pilko, & Pinter-

Wollman, 2018; Seeley, 1983). Scouts are explorers and show low food site fidelity 

towards the novel food sources they discover (Liang et al., 2012). Recruits are 

exploiters and show high food site fidelity, continuously foraging at a known food site 

till it becomes less rewarding (von Frisch, 1967). An appropriate proportion of scouts 

and recruits help the colony to efficiently explore and exploit food sources available to 

it and flexibly respond to changing food conditions (Anderson, 2001; Mosqueiro et al., 

2017).  
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Scouts as well as previously recruited foragers returning from a rewarding food source 

recruit other nest mates in the hive to this food source using the waggle dance, one of 

the most unique form of communication amongst invertebrates (T. Sumpter & Pratt, 

2003; von Frisch, 1967). The waggle dance increases the motivation of nest mates to 

forage and includes the spatial location of the food source (Dyer, 2002; C Grüter & 

Farina, 2009). A waggle dance consists of multiple dance circuits, each of which 

consists of a waggle phase and a return phase. The waggle phase, which encodes 

spatial information, is made up of a straight path during which the dancer shakes its 

abdomen back and forth (Gardner, Seeley, & Calderone, 2008; von Frisch, 1967). The 

return phase is made up of a semi-circular path which brings the dancer close to the 

point where it initiated the waggle phase and encodes information about the 

perceived profitability of the food source (Seeley, Mikheyev, & Pagano, 2000). 

The waggle dance acts as the main regulatory mechanism for the spatial and temporal 

distribution of the foraging activity of a honey bee colony. A foragers decision to 

recruit to a food source is based on not only the reward value of the food source but 

also on interactions with nest mates like receivers, who unload the nectar load 

brought in by foragers from different food sources (Anderson & Ratnieks, 1999; Seeley, 

1989). Foragers, with limited knowledge about environmental and colony conditions, 

can use information from cues and signals associated with these interactions to 

ascertain the relative reward value of the food source they are exploiting for the colony 

and decide to recruit accordingly (W M Farina, 2000; Hart & Ratnieks, 2001; Seeley, 

1986, 1989; Visscher & Seeley, 1982). The specific signal or cue involved could be the 

waiting time before unloading nectar, the time duration of trophallactic interactions 

with receivers, the number of trophallactic interactions and antennation with 

receivers or a combination thereof, although conclusive evidence for these are still 

lacking (De Marco, 2006; De Marco & Farina, 2001; Walter M Farina, 1996; Rivera, 

Donaldson-Matasci, & Dornhaus, 2015; Seeley, 1989). 

Negative feedback also plays an important role in the regulation of foraging in honey 

bee colonies. This feedback involves the use of the stop signal in which foragers (or 

guard bees) continuously butt their heads against a target forager. This signal is 

produced in response to both overcrowded food sources (which would provide only 
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diminishing returns with further recruitment) and cues and signals associated with 

the presence of predators (Lau & Nieh, 2010; Tan et al., 2016, 2013; C. Thom, 2003; 

Corinna Thom, Gilley, & Tautz, 2003). Foragers which have experienced either of 

these two contexts target other foragers dancing for the same food source (possibly 

using odour cues associated with the food source), thereby reducing their motivation 

to dance (D. Moore, Siegfried, Wilson, & Rankin, 1989; Nieh, 1993, 2010; Pastor & 

Seeley, 2005). Similarly, guards who have experienced cues and signals associated 

with predators at the colony entrance can inhibit the motivation of foragers to recruit 

and forage using the stop signal (Tan et al., 2016). Thus, the stop signal provides 

honey bee colonies with an effective mechanism to optimise recruitment and rapidly 

reduce the risk associated with foraging. 

The intricate regulation of foraging activity leads to the presence of multiple forager 

groups in the colony, active at different food sources (Kirchner & Grasser, 1998; 

Kirchner & Lindauer, 1994; D. Moore & Doherty, 2009; Mujagic & Erber, 2009; Seeley, 

1986, 1995; Shah, Jain, & Brockmann, 2018; Van Nest, Otto, & Moore, 2018). In 

contrast to the eusocial colony, forager groups lie at the other end of the social group 

spectrum and comprise of individuals who transiently occupy the same space and who 

have relatively weak associations with each other. Forager group sizes are 

proportionate to the relative reward value of the food source for the colony and can 

change rapidly based on changing food conditions (Seeley, 1986, 1995). Individual 

foragers show floral constancy and keep visiting the food source (till it gets less 

rewarding) leading to the formation of time memories associated with the food source 

(D. Moore & Doherty, 2009; Wagner, Van Nest, Hobbs, & Moore, 2013). On 

subsequent days, some of the foragers from the group fly out to this food source 

before the source becomes rewarding to inspect the source (Biesmeijer & Vries, 2001; 

Granovskiy, Latty, Duncan, Sumpter, & Beekman, 2012). Others in the forager group 

follow dances by these inspectors to get activated at the appropriate foraging time (D. 

Moore et al., 1989; Van Nest et al., 2018). The active forager group can be viewed as a 

recruitment hub for the particular food source, changing their foraging and 

recruitment activity in response to changing environmental conditions (Seeley, 1995). 

Interestingly, very little is known about the role of inter-individual variation within 
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these forager groups, and the effect this variation might have on the functioning of the 

group (Seeley, 1994; Tenczar et al., 2014). 

Consistent inter-individual differences 

Individuals within groups vary in their responses to the same stimuli (Dall, Bell, 

Bolnick, & Ratnieks, 2012; Stamps, 2015). This variation can be due to simple 

stochastic differences between the response of similar individuals or can represent 

consistent inter-individual variation based on intrinsic differences in behavioural 

states. Consistent inter-individual differences in behaviour have been shown in a wide 

variety of behaviours and taxa (Bell, Hankison, & Laskowski, 2009; Wolf & Weissing, 

2012) ranging from aggression in house crickets (Brown, Smith, Moskalik, & Gabriel, 

2006) to nest construction in three spined-sticklebacks (Rushbrook, Dingemanse, & 

Barber, 2008) and consolation behaviour in chimpanzees (Webb, Romero, Franks, & 

De Waal, 2017). Individuals may also show correlated consistent differences in 

behavioural responses across contexts, a phenomenon referred to as behavioural 

syndromes or “animal personalities” (Sih, Bell, & Johnson, 2004; Sih, Bell, Johnson, & 

Ziemba, 2004).  

Inter-individual variation in behaviour can be caused by a combination of genetic and 

epigenetic factors (Bult & Lynch, 2000; Dall et al., 2012; Dingemanse, Both, Drent, 

Van Oers, & Van Noordwijk, 2002; Van Oers, De Jong, Drent, & Van Noordwijk, 

2004). Differences in the environmental stimuli, the pre-imaginal environment that 

an individual is exposed to and the social context can further contribute to inter-

individual variation through epigenetic effects (Arenas & Farina, 2008; Daugherty, 

Toth, & Robinson, 2011; Krause, James, & Croft, 2010; Webster & Ward, 2011). Inter-

individual variation in a population, and even in smaller groups can have far ranging 

consequences (Wolf & Weissing, 2012). It can lead to behavioural specialisation, affect 

various life history traits and population productivity and also lead to speciation (Biro 

& Stamps, 2008, 2010; Dall et al., 2012; Duckworth, 2008). In eusocial insects this 

variation is essential to the division of labour in the colony (Jeanson, Fewell, Gorelick, 

& Bertram, 2007; Tarapore, Floreano, & Keller, 2010). 
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Group responses to perturbations 

Social groups can differ in their structure and in the dynamics of interactions amongst 

individuals in the group (Camazine et al., 2001; Fewell, 2003). In non-eusocial social 

groups, selection mainly acts at the individual level and hence individuals tend to 

maximise their own fitness (Dall et al., 2012; Sober & Wilson, 2011). In contrast, 

selection mostly acts at the colony level in eusocial species’, and not at the individual 

level (Dall et al., 2012; Sober & Wilson, 2011; Waters & Fewell, 2012; Edward O. Wilson 

& Hölldobler, 2005). Individual behavioural decisions are hypothesised to maximise 

group benefits, and this can lead to different network of interactions between 

members in the two kinds of groups (Waters & Fewell, 2012). The number of social 

cues and signals present within eusocial groups can also be expected to be higher due 

to the selection at the colony level (Christoph Grüter & Keller, 2016; Kocher & Cocroft, 

2019; Morand-Ferron et al., 2010; Seeley, 1998). Social cues and signals likely play a 

stronger role in regulating and maintaining inter-individual variation and division of 

labour in eusocial groups (Beshers & Fewell, 2001; Jeanson & Weidenmüller, 2013). 

Irrespective of their structure and dynamics, all social groups must be flexible in 

responding to environmental and social perturbations (D. J. T. Sumpter, 2010). In 

social groups, network dynamics is highly dependent on the presence of predators. 

Individuals in high-risk groups showed stronger associations, which in turn influenced 

their behavioural responses (Hasenjager & Dugatkin, 2017; Kelley, Morrell, Inskip, 

Krause, & Croft, 2011; Micheletta et al., 2012). Similarly, changing food availability and 

gain or loss of members changed the dynamics of the social network, and sometimes 

even lead to instabilities in the network (Cantor et al., 2012; Formica, Wood, Cook, & 

Brodie III, 2016; Foster et al., 2012; Goldenberg, Douglas-Hamilton, & Wittemyer, 

2016; Ilany, Barocas, Koren, Kam, & Geffen, 2013; Ilany, Booms, & Holekamp, 2015; 

Lusseau et al., 2003; Tanner & Jackson, 2012; Williams & Lusseau, 2006). Division of 

labour in eusocial insects relies on replacing lost individuals to maintain the workforce 

necessary to perform the various tasks in the colony (Charbonneau, Sasaki, & 

Dornhaus, 2017; O’Donnell, 1998; Pinter-Wollman, Hubler, Holley, Franks, & 

Dornhaus, 2012). Loss of individuals within task groups can be offset either by 

individuals already involved in the task increasing their performance further (Gardner, 
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Foster, & O’Donnell, 2007; Pendrel & Plowright, 1981; Pinter-Wollman et al., 2012) or 

by new individuals joining the task group (Breed, Williams, & Queral, 2002; 

O’Donnell, 1998). 

Contemporary studies 

Inter-individual behavioural differences affect the responses of populations and 

groups to perturbations (Flack, Girvan, De Waal, & Krakauer, 2006; Krause et al., 

2010; McCann, 2000; Pike, Samanta, Lindström, & Royle, 2008; Noa Pinter-Wollman 

et al., 2012; Schindler et al., 2010; Weidenmüller, 2004; Wolf & Krause, 2014). Thus, it 

is likely that the social context has a strong effect on maintaining consistent inter-

individual variation in behavioural responses (Dall et al., 2012; Jeanson & 

Weidenmüller, 2013; Krause et al., 2010). Consistency in individual differences can 

lead to predictable group level responses. However, flexibility in individual responses 

is necessary to enable the group to adapt to changing conditions. Social groups must 

therefore trade-off consistency and flexibility of individual responses. This trade-off 

can either be through a change in activity of the individuals already responding to the 

stimulus or through a change in the members of the group who are responding to the 

stimulus. Understanding how individual consistency is regulated by the social 

environment is thus essential to comprehend how these groups would respond to 

perturbations. 

Unfortunately, most studies on behavioural syndromes in group living animals have 

either neglected the social context completely or limited it to the presence of a single 

conspecific (Krause et al., 2010). Bringing together the separate fields of animal 

personalities and social networks is difficult due to experimental constraints. These 

experiments would involve multiple observations of identified individuals over long 

time periods followed by carefully controlled manipulative experiments and complex 

analysis to tease apart changes in the dynamics of social networks (Andersson et al., 

2017; Arganda, Hinz, de Polavieja, Pérez-Escudero, & Vicente-Page, 2014; Crall, 

Gravish, Mountcastle, & Combes, 2015; Farine & Whitehead, 2015; N. Pinter-Wollman 

et al., 2013; Sih, Hanser, & McHugh, 2009; Sridhar, Roche, & Gingins, 2019; Wild et 

al., 2018).  
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In parallel to the work in this thesis, there has been an increase in the number of 

studies that focussed on the role of consistent individual differences in forming and 

maintaining social groups (L. M. Aplin et al., 2013; Crall et al., 2018; Firth et al., 2017; 

Formica et al., 2016; Garrison, Kleineidam, & Weidenmüller, 2018; Rudin, Tomkins, & 

Simmons, 2018). In great tits (Parus major) a strong link between personalities of the 

individuals and their positions in the social network was demonstrated. More 

exploratory individuals associated with more conspecifics but in a more transient 

manner as compared to less exploratory individuals who associated with fewer 

conspecifics over longer time periods (L. M. Aplin et al., 2013). A subsequent study 

identified consistent ‘social phenotypes’ of individuals like strength of associations 

with conspecifics, the interaction rate and group size choice (Lucy M. Aplin et al., 

2015). Firth et al. (2017) built on these results by looking at how perturbations affect 

the individuals and the social network. On removing some individuals, flock mates 

compensated by increasing the number of associations and the strength of already 

existing associations. Those individuals which were closest to the removed individuals 

occupied their network positions and associated connections. 

A similar interaction between consistent inter-individual differences and individual 

responses to perturbations was shown in bumblebees (Bombus impatiens). Crall et al. 

(2018) observed bumblebee colonies to identify how individuals respond to a loss of 

foragers in the colony. Foragers showed consistent differences in both their spatial 

distribution in the nest and their foraging activity. On the removal of active foragers, 

individuals which were more spatially central initiated foraging. There was a strong 

link between the spatial fidelity of individual workers and the amount of information 

(from nestmates, brood and waxpots) that they were exposed to. These asymmetric 

exposure to various relevant stimuli within the colony caused the differential response 

of individuals to perturbations. 

Garrison et al. (2018) also studied the effect of social cues on consistency in 

bumblebees (Bombus terrestris). They focussed on the fanning behaviour of 

bumblebee workers in response to changing brood temperature in a solitary and a 

social context. Previous work had revealed consistent inter-individual variation in the 

response thresholds, probability and duration of fanning behaviour of workers 
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(Weidenmüller, 2004). Interestingly, there was a mismatch between the thresholds, 

probability and duration in the solitary and the social context, with individuals 

responding at a higher threshold with decreased probability and duration in the social 

context. A combination of individual differences and behavioural flexibility associated 

with the social context produced consistent group level responses to changing brood 

temperature in bumble bees.  

Experiments in crickets (Teleogryllus oceanicus) showed varying effects of the social 

context and environmental stimuli on consistent inter-individual differences (Rudin et 

al., 2018). Individual crickets showed consistent inter-individual differences, with 

more dominant individuals being bolder, more active and more exploratory (Rudin, 

Tomkins, & Simmons, 2016). The presence of social information (in the form of 

acoustic conspecific signals) made individuals less bold and active. In contrast, an 

environmental disturbance (in the form of physical shaking of the containers housing 

the individuals) made individuals less exploratory but had no effect on their boldness 

or activity levels. The social context had a stronger effect on the consistency in 

individual behavioural responses in comparison to the environmental context. 

Purpose of this thesis 

In this thesis, I studied the consistency in inter-individual differences in the waggle 

dance activity of honey bees within a forager group. Behavioural studies on honey bee 

foragers have a long history, providing robust experimental techniques for long term 

(relative to the life of a honey bee worker) observations and controlled manipulations 

(Scheiner et al., 2013; von Frisch, 1967). The waggle dance behaviour integrates both 

social and environmental cues and plays a vital role in regulating the colonies foraging 

activity. Hence, it is an excellent behavioural paradigm to study the role of these 

different cues in regulating inter-individual variation in eusocial insect groups.  

Each chapter in the thesis (except the Introduction and Conclusion) is structured in 

the form of a manuscript, with its own introduction and discussion. Further, after the 

discussion, a ‘future directions’ section describes possible follow up experiments that 

can expand on the results in the chapter. Chapters 2, 3 and A1 are already published as 

part of a single manuscript (George & Brockmann, 2019). Chapter 4 has been 
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published as a separate manuscript and the entire manuscript is provided here 

(George, Bröger, Thamm, Brockmann, & Scheiner, 2019). A brief overview of the 

various chapters is provided below: 

Chapter 2 – Consistency 

The second chapter reports studies that quantify the consistency of inter-individual 

differences in the waggle dance activity of honey foragers from the same forager 

group. All the foragers were exposed to the same environmental conditions, and no 

manipulation of the social context was done. The results of repeated observations of 

the same individuals highlighted strong consistent inter-individual differences in all 

parameters of the waggle dance behaviour within forager groups. I end this chapter by 

discussing the role that consistent inter-individual differences can play in the 

regulation of foraging at the colony level.  

Chapter 3 – Removal 

In the third chapter, the manipulation experiments done to look at the effect of a 

change in the social environment on inter-individual differences in dance activity are 

described. The manipulation involved the removal of foragers from the forager group. 

The pre and post-removal dance activity of the remaining individuals were compared 

to quantify the change in activity. Changing the forager group size, and a likely change 

in associated social cues, caused individuals which were more active to change their 

dance activity, while other foragers in the group were unaffected. Further there was a 

greater increase in the dance probability, as compared to the dance intensity of 

individual foragers. I then discuss how the results of these manipulation experiments 

increase our knowledge of forager group (and the honey bee colony in general) 

responses to perturbations. 

Chapter 4 – Thresholds 

In the fourth chapter, the link between inter-individual variation in dance activity and 

in gustatory response thresholds is explored. Individuals were first observed foraging 

under free-flying conditions and their dance activity was quantified. Following this, 

the response thresholds of the individuals were quantified using the proboscis 
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extension reflex assay. The results show a weak correlation between response 

thresholds and dance intensity, but not between thresholds and the other parameters 

of dance activity, including dance probability. This chapter also contains a description 

of collaborative work done to look at possible candidate genes that show a correlation 

with individual variation in the waggle dance activity. 

Chapter 5 – Simulations 

In the fifth chapter, an agent-based model is described which is used to explore the 

functional significance of dance probability and dance intensity in maintaining 

consistent inter-individual differences in recruitment. These models expand on an 

earlier model with a focus on inter-individual differences. The simulations revealed 

that dance intensity correlates more with consistent individual differences in 

recruitment than dance probability. I discuss how these results provide supporting 

evidence for the results in chapters 1, 2 and 3. I further point out the benefits of agent-

based models to these behavioural studies by highlighting future versions of the model 

which can look at mechanisms and the adaptive benefits of inter-individual 

differences in the regulation of honey bee foraging. 

Chapter A1 – Recruits 

The first additional chapter describes experiments in which the forager group size was 

increased by allowing recruits to join the group. The results show that forager groups 

can drastically reduce their recruitment activity in a short duration in response to the 

presence of recruits. They further support results from chapter 2 on the social 

modulation of the waggle dance activity. 

Chapter A2 – Followers 

The second additional chapter describes a comparative analysis of the dance follower 

behaviour among 3 Asian Apis species, A. florea, A. dorsata and A. cerana. 

Comparative studies might provide a hint about the exact mechanism by which dance 

followers obtain the spatial location of the food source. The results point to interesting 

differences in the 3 species and are discussed in the context of the current hypotheses 

regarding mechanisms underlying spatial information transfer in the waggle dance. 
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Chapter 2 – Consistency 

Introduction 

Animals must necessarily respond to external stimulus in an appropriate manner to 

survive under natural conditions. However, individuals from the same species, and 

even from the same population can respond differently to the same stimulus. This 

difference can be in terms of either another behavioural response or even a change in 

intensity of the same behavioural response (Ryan, 2012). Moreover, these differences 

can be consistent, i.e., individuals repeatedly show the same differences in their 

behavioural responses to the same stimuli (Bell, Hankison, & Laskowski, 2009). 

Behavioural syndromes or ‘personalities’ refer to the phenomenon of having correlated 

consistent inter-individual differences across behaviours (Sih, Bell, & Johnson, 2004). 

These syndromes incorporate inter-individual variation along with some inflexibility 

amongst individuals while responding to different stimuli (Dall, Bell, Bolnick, & 

Ratnieks, 2012). 

There is a growing interest in the field of animal behaviour on these behavioural 

syndromes and their importance with respect to individual and group fitness (Wolf & 

Weissing, 2012). This interest has been driven by recent advances in the field in terms 

of both analytical frameworks and data collection methods which have enabled 

scientists to look at the causes and consequences of inter-individual variation (Araújo 

et al., 2008; Nakagawa & Schielzeth, 2010). Consistent inter-individual differences in 

behavioural responses is observed across the animal kingdom (Bell et al., 2009). These 

differences have been seen in a variety of behaviours including aggression (Brown, 

Smith, Moskalik, & Gabriel, 2006), boldness (Mazue, Dechaume-Moncharmont, & 

Godin, 2015), courtship (Rushbrook, Dingemanse, & Barber, 2008), exploration 

(Dingemanse, Both, Drent, Van Oers, & Van Noordwijk, 2002), foraging (Missoweit, 

Engels, & Sauer, 2007) and migration (Battley, 2006). Interestingly, in social insects, 

studies on inter-individual variation have historically focussed on behavioural 

specialisation with respect to division of labour (Dall et al., 2012). 

Inter-individual variation in behavioural responses can arise from interaction between 

multiple sources in any species (Dall et al., 2012; Jeanson & Weidenmüller, 2013). 
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Although it is difficult to pinpoint the exact contribution of various sources of inter 

individual variation, different studies have tackled this problem by focussing on one of 

these sources and trying to elucidate how it leads to individual differences. The most 

predominantly explored source of variation is genetic diversity (Bult & Lynch, 2000; 

Dingemanse et al., 2002; Van Oers, De Jong, Drent, & Van Noordwijk, 2004). Other 

factors which affect behavioural differences include natural variation in developmental 

pathways between individuals, differences in environmental stimuli leading to 

diverging behavioural responses and epigenetic effects (Dall et al., 2012). In eusocial 

insects, the preimaginal environment, as well as stimuli faced during the early life 

stages can influence adult behavioural responses (Ament et al., 2011; Arenas & Farina, 

2008; Daugherty, Toth, & Robinson, 2011; Judd, Magnus, & Fasnacht, 2010). Finally, in 

social groups and eusocial insects, the social environment and the responses of other 

group members can also affect an individual’s behavioural response (Krause, James, & 

Croft, 2010; Webster & Ward, 2011).  

There is growing evidence about how inter-individual differences can be beneficial 

both for populations and smaller groups (Wolf & Weissing, 2012). Inter-individual 

variation in a population can have a wide range of ecological effects on its dynamics, 

including effects on life history traits (Biro & Stamps, 2008), population production 

(Duckworth, 2008) and flexibility in responding to perturbations (McCann, 2000). 

From an evolutionary perspective, these individual differences can have an important 

effect on behavioural specialisation (Dall et al., 2012) and increase the diversity of the 

population’s behavioural repertoire (Seid & Traniello, 2006), thus directly influencing 

speciation. In eusocial insects, theoretical studies have shown that individual variation 

is an essential component of division of labour (Jeanson, Fewell, Gorelick, & Bertram, 

2007; Tarapore, Floreano, & Keller, 2010), leading to more efficient utilisation of the 

colony’s task force (Bertram, Gorelick, & Fewell, 2003; Gove, Hayworth, Chhetri, & 

Rueppell, 2009). Manipulative experiments have also indicated that these inter-

individual behavioural variations play a vital role in how resilient the colony is to 

perturbations (Crall et al., 2018; Pinter-Wollman, Hubler, Holley, Franks, & Dornhaus, 

2012; Weidenmüller, 2004).  
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Inter-individual differences in group living species can affect the group structure and 

dynamics (Krause et al., 2010). Thus, understanding these differences are essential to 

understanding how such groups are formed and maintained. The influence of this 

variation can also depend on the type of social group. For example, vertebrate social 

networks and eusocial insect networks are known to differ in their group structure and 

the type of interactions present within them (Fewell, 2003; Waters & Fewell, 2012). 

Moreover, while selection within social groups generally tends to act on individual 

traits, in eusocial insects, selection will act prominently at the colony level, since each 

colony is a single unit of reproduction (Sober & Wilson, 2011; Waters & Fewell, 2012). 

As a result, the mechanisms underlying these differences and the benefits of these 

differences for the group is likely to be different. Although behavioural syndromes 

have been well studied in vertebrates, there are fewer studies that have observed them 

within the context of social groups. The literature on consistent inter-individual 

variation in eusocial insects is even more scarce. However, recent studies have started 

bringing together the concept of behavioural syndromes and within worker variation 

in eusocial insect colonies (Crall et al., 2018; Garrison, Kleineidam, & Weidenmüller, 

2018; Muller, Grossmann, & Chittka, 2010). 

In this chapter, I will focus on consistency in inter-individual differences in waggle 

dance activity shown by individuals from the same forager group in honey bees. In 

honey bees, previous studies have shown some consistency in the behavioural 

responses like trophallaxis, aggression (Walton & Toth, 2016) and trap lining 

behaviour of foragers (Buatois & Lihoreau, 2016). Importantly, there have been no 

studies which have looked at whether consistent inter-individual differences can exist 

in the recruitment behaviour of any social insect. Understanding the degree of 

consistency and behavioural variation present amongst foragers will improve our 

understanding of the regulation of foraging behaviour in honey bees and can give 

deeper insights into how social insect colonies are structured in general. 
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Materials and Methods 

Apis mellifera colonies 

All experiments were done on the campus of the National Centre for Biological 

Sciences, Bangalore. 

Apis mellifera colonies were obtained from a commercial beekeeper (Spruce Impex 

Ltd.). Colonies were usually composed of 4 frames with one or two frames of brood. 

Experiments were done inside a flight cage (20 m length x 4 m height x 4 m width). 

The flight cage was completely covered with a mesh structure, thus preventing any 

bees inside the cage from moving out. Each colony was moved into the flight cage 4-6 

days before the start of the experiments. Two feeders, containing sucrose solution and 

pollen respectively, were provided inside the flight cage. The colony did not have 

access to any other food source inside the flight cage. This ensured that most of the 

nectar and pollen foragers in the colony were active at these two food sources 

respectively. 

Forager training 

Foragers were trained to the feeder containing 1M sucrose solution over 2-3 days. The 

feeder consisted of a brightly coloured stand and a plastic plate (Seeley, 1995; von 

Frisch, 1967). The plate was filled with sucrose solution for the same 3 hours on each 

training day. Foragers were trained by first placing the feeder near the hive and then 

by manually transporting foragers that were coming outside the hive to the feeder 

using a stick smeared with sucrose solution. Foragers were repeatedly transported 

from the hive entrance to the feeder till at least one forager started coming on its own. 

Once this happened, the foragers were allowed to recruit their nest mates to the 

feeder and no more transporting was done. When there were around 10 foragers at the 

feeder, the feeder was slowly shifted away from the hive (Scheiner et al., 2013). The 

shift was done in small steps of about 1 metre. The feeder was kept at each location for 

30 minutes or so, to ensure that enough foragers were still coming to it. The feeder 

was shifted to a final distance of 13 m from the hive. During the training phase, the 

pollen feeder was only provided when the sucrose feeder was not active. Once the 

feeder was shifted to the final distance, the colony was transferred into an observation 
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hive within a small enclosure at one end of the flight cage. The observation hive was 

able to accommodate 3 frames of the colony, placed vertically. The walls on both sides 

of the observation hive were made of glass, allowing easy visual access to in-hive 

activities without disturbing the colony. A wedge was also placed at the bottom of the 

observation hive (Visscher & Seeley, 1982). This directed incoming foragers to one side 

of the observation hive, ensuring that all the waggle dance activity of the foragers 

happened on one side of the frame. 

Individual Identification 

Foragers which were active at the sucrose feeder were caught and kept on ice for a 

short duration till they became inactive. Identification tags (small coloured plastic tags 

with numbers on them) were then affixed to their backs using glue, based on 

established bee tagging protocols (Scheiner et al., 2013). Around 20-30 foragers were 

randomly selected from the group of foragers visiting the feeder for tagging. This 

ensured that the forager groups were made of individuals which were representative of 

the inter-individual variation in activity present in the colony. However, no other 

specific information regarding the demographics of the group (like the age of the 

individual foragers) could be obtained in our experimental protocol. The marked 

foragers were released back to the hive and were then monitored for 2 days before the 

experiments were started. Sometimes, the plastic tags got removed from the foragers 

due to the general activity of the hive etc. If less than 12 individually marked foragers 

were coming to the feeder after 2 days of marking, the whole marking process was 

repeated.  

Experimental Protocol 

The experiments were started 2 days after the tagging process and consisted of 3 

consecutive days of observation of the individually marked foragers (except in the case 

of 2 experimental repeats in which observations could only be done for 2 days, see 

Table 2.1). All experiments were started when there were at least 12 foragers coming to 

the feeder. After this, any other marked individual forager was caught and put on ice 

for the duration of the observations on that day. All unmarked recruits that were 
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coming to the feeder during this time were also caught and put on ice till the end of 

the observation period on each day. 

On each day, the observations lasted for 3 hours (Fig. 2.1). The feeder was filled with 

1M sucrose during the first hour, 2M during the second hour and 1M again during the 

third hour, following an established experimental protocol (Seeley, 1994). During 

these 3 hours, the foraging and dance activity of the individual foragers were observed. 

The colony had access to only the sucrose feeder and not the pollen feeder during the 

experimental time. None of the pollen foragers were active during this time, and the 

behavioural observations were limited to the individually marked sucrose foragers. 

Two observers were present at the feeder throughout the 3 hours. One of them noted 

the time (with a precision of one minute) when each forager landed at the feeder. The 

other caught all the recruits that were coming to the feeder to keep the individually 

marked foragers motivated to dance throughout the experiments (Seeley, 1995). Near 

the observation hive, there was another observer who would video record the dances 

of the individually marked foragers. Recordings were made using a Sony Handycam 

(HDR CX260/HDR CX240) at 1080p and 25/50 frames per second. The recordings 

were started when any of the marked individuals started dancing and were stopped 

when none of the marked individuals were dancing. A total of 117 foragers, from 12 

forager group and 8 different colonies were observed (Table 2.1). 

Table 2.1 

Forager 

Group 

Name 

Month Year Experimental 

Days 

Forager 

Group Size 

Colony 

H1* January 2014 2 8 1 

H2* January 2014 2 11 1 

H3 February 2014 3 7 1 

H4 February 2014 3 10 1 

H5 April 2014 3 9 2 

H6 February 2016 3 12 3 

H7 April 2016 3 8 4 

H8 September 2016 3 8 5 
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L1 October 2016 3 10 6 

L2 November 2016 3 12 7 

L3 November 2016 3 11 7 

L4 January 2017 3 11 8 

 

Table 2.1: The identity of the forager group, the month and year when the group was observed, the 

number of experimental days, the forager group size and the colony to which the forager group 

belonged to in the consistency experiments. Forager groups marked with an * had a 2-day observation 

phase. The different letters in the forager group name correspond to the types of removal done (see 

chapter 3 for details). 

 

Video Analysis 

The recorded dances of the foragers were then analysed manually using the open 

source software VLC Media Player. Since the feeder location was very close to the hive, 

most foragers did dances with very short waggle phases (Gardner, Seeley, & Calderone, 

2008). The total number of circuits performed by each forager during each dance was 

obtained from the videos. Each dance circuit involved the forager walking in a circular 

path with a short waggling motion of her abdomen at the end of the path (Sen Sarma, 

Esch, & Tautz, 2004).  

Statistical Analysis 

The statistical analysis focussed on 6 different behavioural parameters estimated for 

each bee for each day. They were: 1) total number of dance circuits, 2) total number of 

dances, 3) total number of foraging trips, 4) the probability of dancing (the ratio of the 

total number of dances to the total number of trips), 5) the ratio of the total number 

of circuits to the total number of dances (referred to as Circuits/Dances) and 6) the 

ratio of the total number of circuits to the total number of trips (referred to as 

Circuits/Trips). The last two ratios are different methods of calculating the intensity of 

the dances made by the foragers. Circuits/dances gives an estimate of how much a 

forager dances on average and is a good proxy for how rewarding the food source is 

(Seeley, 1994). On the other hand, the circuits/trips parameter provides an estimate 

for the intensity of the dances normalised to differences in the number of foraging 
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trips made by different foragers over the 3 days. All 6 parameters were calculated from 

the total activity of each forager over 3 hours. 

 

Figure 2.1 

 

Figure 2.1: Experimental protocol for the observations of consistency in dance activity of honey bee 

foragers. Individually marked foragers were provided with a feeder containing 1M, 2M and 1M sucrose 

consecutively for one hour each. The dance activity of these foragers was then videotaped at the 

observation hive. Observations lasted for 3 consecutive days, and all unmarked recruits coming to the 

feeder were caught and kept on ice during the observation time. 

 

Individual level consistency in activity in each of the 6 parameters was obtained using 

repeatability estimates (Nakagawa & Schielzeth, 2010). Repeatability estimates 

compare the variation within individuals to the variation across individuals in the 

specific parameter of interest. They are obtained using generalized linear mixed-

effects models (GLMMs) fitted by restricted maximum likelihood. These estimates 

thus are better than other methods of comparing individual consistency as they can be 

used to account for various random effects structures in the experimental design and 

can be used to model different distributions like the Poisson, Binomial etc. [7]. The 

estimate has a range from 0 to 1, with a value close to 1 indicating highly consistent 
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inter-individual differences in activity in that parameter. Confidence intervals around 

the repeatability estimate were obtained using parametric bootstrapping (1,000 

iterations). Permutation tests (1,000 permutations) were used to test the null 

hypothesis that the repeatability estimate is significantly different from zero.  

Repeatability estimates were obtained for each of the 3 hours separately as well as the 

combined data from all 3 hours for each of the parameters. A different model was built 

to obtain the repeatability estimate for each of the parameter of interest. The 

parameter of interest was the response variable and the individual identity was the 

random effect in these models. The error distribution of the model was decided based 

on the parameter. For parameters based on count data (total number of dance circuits, 

total number of dances and total number of trips), a Poisson error distribution was 

used. A Gaussian error distribution was used for parameters that were ratios 

(probability of dancing, circuits/dances and circuits/trips). The rptR package (Stoffel, 

Nakagawa, & Schielzeth, 2017) in R was used to build the GLMMs, bootstrap the 

model, run the permutation tests and obtain the repeatability estimates. 

Visualisation of the raw data, the mean and standard deviation of each individual for 

each parameter and the repeatability estimates was done in R (R Core Team, 2018) 

using the ggplot2 (Wickham, 2016) and cowplot (Claus O. Wilke, 2018) package. 

Results 

Dance Circuits 

Foragers showed large inter-individual differences in their dance circuits for the same 

feeder reward (Fig. 2.2). The most active forager (in this parameter) amongst all 117 

foragers observed made an average 643.667 ± 262.709 number of circuits over 3 days, 

while the least active forager made an average 4.5 ± 6.364 number of circuits (Fig. 2.8 

a). Even within forager groups, there were inter-individual differences in the total 

dance circuits. The ratio of the most active to the least active forager was on average 

13.978 ± 11.911 (n = 12, range = 2.24 – 47.704). That is, on average, there was a 13-fold 

difference between the most active and least active forager within a forager group 

active at the same food reward in the total number of dance circuits that they 
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performed. The coefficient of variation in dance circuits within forager groups was on 

average 0.587 ± 0.162 (n = 12, range = 0.289 – 0.851). 

These inter-individual differences in dance circuits were consistent (Fig. 2.10 a). The 

repeatability estimate for the combined dance circuits (from all 3 hours) was 0.5263 

(CI = 0.4295 – 0.6002, p < 0.001). This was similar to the repeatability estimate for the 

first 1M (0.5519, CI = 0.4365 – 0.6471, p < 0.001), 2M (0.5637, CI = 0.4570 – 0.6551, p < 

0.001) and the second 1M (0.6690, CI = 0.5540 – 0.7528, p < 0.001). 

Number of Dances 

Individuals showed large differences in their number of dances for the same feeder 

reward (Fig. 2.3). The most active forager (in this parameter) amongst all 117 foragers 

observed made an average 43.667 ± 12.342 number of dances over 3 days, while the 

least active forager made an average 1 ± 1.414 number of dances (Fig. 2.8 b). Even 

within forager groups, there were inter-individual differences in the total number of 

dances. The ratio of the most active to the least active forager was on average 7.136 ± 

4.863 (n = 12, range = 1.605 – 20.333). That is, on average, there was a 7-fold difference 

between the most active and least active forager within a forager group active at the 

same food reward in the number of dances that they did. The coefficient of variation 

in the number of dances within forager groups was on average 0.444 ± 0.140 (n = 12, 

range = 0.173 – 0.683). 

These inter-individual differences in the number of dances were highly consistent (Fig. 

2.10 b). The repeatability estimate for number of dances was 0.6479 (CI = 0.5493 – 

0.7319, p < 0.001). This was similar to the repeatability estimate for the first 1M 

(0.5804, CI = 0.4396 – 0.6843, p < 0.001), 2M (0.5883, CI = 0.4648 – 0.6708, p < 

0.001) and the second 1M (0.7598, CI = 0.6709 – 0.8849, p < 0.001). 

Foraging Trips 

Foragers showed inter-individual differences in their number of foraging trips for the 

same feeder reward (Fig. 2.4). The most active forager (in this parameter) amongst all 

117 foragers observed made an average 79 ± 1 foraging trips over 3 days, while the least 

active forager made an average 24 ± 8.485 foraging trips (Fig. 2.8 c). 
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Figure 2.2 

 

Figure 2.2: The total dance circuits made by all individuals observed from each of the 12 forager groups 

over 3 days (2 days in the case of forager groups F1 and F2). Each forager within one forager group is 

represented by a different colour. 
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Figure 2.3 

 

Figure 2.3: The number of dances made by all individuals observed from each of the 12 forager groups 

over 3 days (2 days in the case of forager groups F1 and F2). Each forager within one forager group is 

represented by a different colour. 
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However, within forager groups, there were much smaller inter-individual differences 

in the foraging trips performed. The ratio of the most active to the least active forager 

was on average 1.676 ± 0.269 (n = 12, range = 1.333 – 2.25). That is, most foragers 

performed similar number of foraging trips in all the forager groups. The coefficient of 

variation in the number of trips within forager groups was on average 0.156 ± 0.042 (n 

= 12, range = 0.088 – 0.242). 

These inter-individual differences in foraging trips showed some degree of consistency 

(Fig. 2.10 c). The repeatability estimate for number of foraging trips were 0.4644 (CI = 

0.3372 – 0.5700, p < 0.001). This was similar to the repeatability estimate for the first 

1M (0.3136, CI = 0.1692 – 0.3979, p < 0.001), 2M (0.3043, CI = 0.1663 – 0.3854, p < 

0.001) and the second 1M (0.4377, CI = 0.3009 – 0.5397, p < 0.001). 

Probability of Dancing 

There were large inter-individual differences in the probability of dancing of the 117 

foragers observed (Fig. 2.5). The most active forager (in this parameter) had a 

probability of dancing of 0.904 ± 0.084 on average, whereas the least active forager 

had a probability of dancing of 0.013 ± 0.019 on average (Fig. 2.9 a). This inter-

individual variation in the probability of dancing could be observed even within 

forager groups. The ratio of the most active to the least active forager was on average 

6.589 ± 4.896 (n = 12, range = 1.568 – 20.681). On average, there was a 6-fold variation 

between the most active and least active forager within a forager group active at the 

same food reward. The coefficient of variation in the probability of dancing within 

forager groups was on average 0.425 ± 0.131 (n = 12, range = 0.171 – 0.621). 

Inter-individual differences in the probability of dancing were highly consistent (Fig. 

2.10 d). The repeatability estimate was 0.7014 (CI = 0.6148 – 0.7702, p < 0.001).  This 

was similar to the repeatability estimate for the first 1M (0.5439, CI = 0.4375 – 0.6330, 

p < 0.001), 2M (0.6501, CI = 0.5565 – 0.7253, p < 0.001) and the second 1M (0.6361, CI 

= 0.5368 – 0.7189, p < 0.001). 
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Circuits/Dances 

Individual foragers showed large differences in their circuits/dances for the same 

feeder reward conditions (Fig. 2.6). Of the 117 foragers observed, the most active 

forager (in this parameter) had an average of 24.016 ± 3.013 circuits/dances while the 

least active forager had an average of 2.25 ± 3.182 circuits/dances (Fig. 2.9 b). Within 

forager groups, there was on average a 3-fold difference between the most and least 

active forager (n = 12, mean ± standard deviation = 3.134 ± 1.923, range = 1.555 – 

8.879). The coefficient of variation in the circuits/dances of foragers within forager 

groups was on average 0.307 ± 0.097 (n = 12, range = 0.140 – 0.518). 

These inter-individual differences in circuits/dances were highly consistent (Fig. 2.10 

e). The repeatability estimate was 0.6845 (CI = 0.5925 – 0.7552, p < 0.001). This was 

similar to the repeatability estimate for the first 1M (0.4927, CI = 0.3709 – 0.5936, p < 

0.001), 2M (0.6343, CI = 0.5288 – 0.7176, p < 0.001) and the second 1M (0.5207, CI = 

0.4006 – 0.6196, p < 0.001). 

Circuits/Trips 

Foragers showed large inter-individual differences in their circuits/trips for the same 

feeder reward (Fig. 2.7). The most active forager (in this parameter) amongst all 117 

foragers observed made an average 13.305 ± 3.381 circuits/trips over 3 days, while the 

least active forager made an average 0.061 ± 0.084 circuits/trips (Fig. 2.9 c). Even 

within forager groups, there were inter-individual differences in their circuits/trips. 

The ratio of the most active to the least active forager was on average 15.122 ± 15.06 (n 

= 12, range = 2.167 – 59.881). That is, on average, there was a 15-fold difference 

between the most active and least active forager within a forager group active at the 

same food reward in their circuits/trips. The coefficient of variation in the 

circuits/trips of foragers within forager groups was on average 0.597 ± 0.165 (n = 12, 

range = 0.294 – 0.808). 
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Figure 2.4 

 

Figure 2.4: The number of foraging trips made by all individuals observed from each of the 12 forager 

groups over 3 days (2 days in the case of forager groups F1 and F2). Each forager within one forager 

group is represented by a different colour. 
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Figure 2.5 

 

Figure 2.5: The probability of dancing of all individuals observed from each of the 12 forager groups over 

3 days (2 days in the case of forager groups F1 and F2). Each forager within one forager group is 

represented by a different colour. 
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Figure 2.6 

 

Figure 2.6: The circuits/dances of all individuals observed from each of the 12 forager groups over 3 days 

(2 days in the case of forager groups F1 and F2). Each forager within one forager group is represented by 

a different colour. 
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Figure 2.7 

 

Figure 2.7: The circuits/trips of all individuals observed from each of the 12 forager groups over 3 days 

(2 days in the case of forager groups F1 and F2). Each forager within one forager group is represented by 

a different colour. 
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These inter-individual differences were highly consistent (Fig. 2.10 f). The repeatability 

estimate for circuits/trips was 0.7006 (CI = 0.6138 – 0.7692, p < 0.001). This was 

similar to the repeatability estimate for the first 1M (0.5454, CI = 0.4362 – 0.6401, p < 

0.001), 2M (0.6983, CI = 0.6136 – 0.7664, p < 0.001) and the second 1M (0.6309, CI = 

0.5317 – 0.7066, p < 0.001). 

Discussion 

Foragers showed large inter-individual differences in their dance activity in all the 

parameters measured. These differences could be seen even in individuals from the 

same forager groups, active at the same feeder at the same time. Moreover, the inter-

individual differences in dance activity were highly consistent over the 3 days of 

observation. Individuals showed the greatest repeatability in their probability of 

dancing (repeatability estimate = 0.7014) and circuits/trips (repeatability estimate = 

0.7006), followed by circuits/dances (repeatability estimate = 0.6845) and the number 

of dances (repeatability estimate = 0.6479). Individuals also showed consistent inter-

individual differences in the total number of dance circuits performed (repeatability 

estimate = 0.5263). Finally, even though significantly consistent inter-individual 

differences could be seen in the foraging trips done by the foragers, the repeatability 

estimate (0.4644) was lower than in the other parameters. This indicates that inter-

individual differences in foraging trips were not as strong in comparison with the 

other dance activity parameters. 

Consistent inter-individual differences have been observed across the animal kingdom 

(Bell et al., 2009). In vertebrates, such differences have been seen in behaviours like 

anti-predatory behaviour (Kralj-Fišer, Scheiber, Blejec, Moestl, & Kotrschal, 2007), 

habitat selection (Kamel & Mrosovsky, 2005) and mate choice (Hoysak & Godin, 

2007). In group living animals also, consistent behavioural differences have been 

shown in risk taking (Ioannou & Dall, 2016) and various social behaviours (Aplin et al., 

2013, 2015). However, such differences have not been well studied in insects, 

especially in eusocial insects (Bell et al., 2009). In honey bees, repeatable behavioural 

differences are present in some behaviours like trophallaxis and trapline foraging 

(Buatois & Lihoreau, 2016; Walton & Toth, 2016).  The results of the consistency 

experiments show that consistent inter-individual differences exist even in the 
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recruitment behaviour of eusocial insects. Interestingly, the repeatability estimates 

obtained in these experiments are at the higher end of estimates obtained from earlier 

studies on other behavioural responses in insects and specifically honey bees (Bell et 

al., 2009; Walton & Toth, 2016). This suggests that consistent inter-individual 

variation in dance activity may have an adaptive function with respect to the colony’s 

regulation of foraging (Jeanson & Weidenmüller, 2013).  

Interestingly, foragers showed relatively low consistency in the foraging trips that they 

made to the same feeder. Inter-individual differences in foraging trips were also not as 

varied as for the other parameters. The most active and least active forager in foraging 

trips within forager groups showed a 1.6-fold difference on average. In contrast, in all 

the other parameters, the difference between the most active and least active forager 

(in that particular parameter) within forager groups was much higher (14-fold in 

number of dance circuits, 7-fold in number of dances, 6.5-fold in probability of 

dancing, 3.1-fold in circuits/dances and 15-fold in circuits/trips). The low variation in 

foraging trips could be an artefact of the experimental set-up. In our experiments, the 

foragers only had to fly 13 m to reach the feeder from the hive. It would have taken 

most foragers a few seconds to cover this distance (Esch & Burns, 1996). As a result, 

most foragers ended up making similar number of foraging trips during the 

observation time. 

Our results on the consistency in dance activity should hold true under natural 

conditions also, wherein foraging dynamics might be different than this set up. In this 

experimental set up, foragers had access to an unlimited food source at a very short 

distance from the hive. In nature, most foragers must fly for much longer to obtain 

profitable food sources (Dukas & Visscher, 1994; Dyer & Seeley, 1991; Tenczar, Lutz, 

Rao, Goldenfeld, & Robinson, 2014; Thom, Seeley, & Tautz, 2000). These food sources 

would also have a limited amount of nectar at varying flow rates (Núñez, 1982). Thus, 

foragers would end up visiting multiple flowers, possibly within the same patch, before 

returning to the hive (Degen et al., 2015; S. Wolf et al., 2014). Under such conditions, 

foragers would have to decide the time they spend in foraging and in communicating 

about the food source, likely leading to stronger inter-individual differences, 

particularly in the number of foraging trips made by individuals.  
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Figure 2.8 

 

Figure 2.8: Mean (circles) and standard deviation (error bars) of (a) total dance circuits, (b) number of 

dances and (c) number of foraging trips of all 117 foragers from 12 forager groups. The colour of the 
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circles represents the value of the parameter, ranging from blue for low values to red for high values. 

Circles in the same column in (a), (b) and (c) represent the same individual. 

 

Figure 2.9 
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Figure 2.9: Mean (circles) and standard deviation (error bars) of (a) probability of dancing, (b) 

circuits/dances and (c) circuits/trips of all 117 foragers from 12 forager groups. The colour of the circles 

represents the value of the parameter, ranging from blue for low values to red for high values. Circles in 

the same column in (a), (b) and (c) represent the same individual. 

Figure 2.10 

 

Figure 2.10: Repeatability estimate and 95% confidence intervals (circles and error bars) of all 117 

foragers for (a) total number of dance circuits, (b) number of dances, (c) number of foraging trips, (d) 

probability of dancing, (e) circuits/dances and (f) circuits/trips. The repeatability estimates for each of 

the three hours (first 1M, 2M and second 1M) were similar to the overall repeatability estimate obtained 

from pooling the data for all three hours (red colour). 

 

The dance activity of honey bee foragers is linked to the perception of the food reward. 

Previous work showed that there are inter-individual differences in the perception of 

the food reward (Seeley, 1994). This perception is tied to the energy dynamics of each 

individual forager (Seeley, 1994). The results of the consistency experiments show that 

these differences in perception are consistent. Each forager group observed was 

composed of foragers which perceived the same reward differently. More active 
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dancers perceived the food as being more rewarding whereas less active dancers 

perceived the food as being less rewarding. The differences in perception of the food 

reward could be representative of differences in response thresholds amongst the 

foragers. 

Sucrose responsiveness, based on gustatory response thresholds, strongly correlates 

with division of labour in eusocial insects (Beshers, Robinson, & Mittenthal, 1999; 

Page, Scheiner, Erber, & Amdam, 2006; Perez, Rolland, Giurfa, & D’Ettorre, 2013). In 

honey bees, nurses and foragers differ in their sucrose responsiveness (Pankiw & Page, 

1999). Even within foragers, pollen foragers have a lower threshold as compared to 

nectar foragers (Scheiner, Page, & Erber, 2001). The consistency experiments show 

that within forager groups, there is partitioning of the task of recruitment amongst the 

individual foragers. Sucrose responsiveness could be correlated with this fine scale 

task partitioning also. In chapter 4, this correlation will be explored in detail. 

Inter-individual differences in dance activity has important implications for the 

regulation of foraging at the colony level. The partitioning of the task of recruitment 

amongst the foragers within a forager group would help the colony control the 

amount of recruitment to each food source. Each forager group acts as the information 

source for one particular food source that they are active at (Seeley, 1994; Seeley & 

Towne, 1992). If all foragers performed the same amount of recruitment to a food 

source, then the recruitment to that food source would either increase very drastically 

in a short duration or would proceed at a very slow pace. This would potentially lead 

to overcrowding at the food source (Kirchner & Lindauer, 1994; C. Thom, 2003; 

Corinna Thom, Gilley, & Tautz, 2003) or under exploitation of the food source.  

In addition to differences in dance activity, differences in perception of the food 

reward could also help the colony regulate foraging. The perception of the food reward 

correlates with the persistence at a food source (Al Toufailia, Grüter, & Ratnieks, 2013; 

Townsend-Mehler, Dyer, & Maida, 2010). Foragers which perceived the food as being 

more rewarding would be more likely to continue at that source. In contrast, foragers 

which perceived the food as being less rewarding would be more likely to abandon the 

food source. Thus, inter-individual differences in perception of the food reward would 

also help the colony to regulate the number of foragers active at any food source. 
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The interplay between inter-individual differences in the perception of the food 

reward, the information communication about the food reward and the persistence at 

a food source should play a major role in the regulation of foraging at the colony level. 

Thus, consistent inter-individual differences in dance activity can have a major 

functional role in the colony. It would help the colony to efficiently utilise its entire 

foraging force to effectively exploit the food available to it. 

Future Directions 

Future experiments could focus on quantifying consistent inter-individual differences 

in other aspects of the foraging behaviour under more natural conditions. It would be 

useful to measure repeatability estimates for forager groups active at food sources 

much further away from the colony to confirm the results in this chapter. This can 

also be used to explore whether longer flight distances would reveal more consistent 

inter-individual differences in foraging trips. Other aspects of foraging also merit 

further exploration to understand the extent to which consistent inter-individual 

differences are present in various contexts associated with foraging. For example, the 

nectar load that individual foragers bring in and the time spent interacting with 

receivers and other nest mates in the hive after a foraging trip are two aspects that can 

be explored. This can provide a clearer picture of the presence of behavioural 

syndromes or ‘personalities’ amongst honey bee foragers. 

Another interesting aspect that can be explored in a future experiment would be the 

effect of different food reward conditions on the consistency in dance activity of 

foragers from the same forager group. A higher food reward might lead to a greater 

variation in the dance activity amongst individuals, leading to a higher repeatability. 

To quantify this effect, longer experimental observations of individual foragers would 

be needed with a single feeder reward offered for multiple days. Although in this 

chapter, foragers were offered multiple feeder rewards (1M and 2M), since they were 

offered one after the other, it would be difficult to dissociate any effect of the 

preceding reward on the dance activity for the current reward condition. This could 

explain the similarity in the repeatability estimates for the different food rewards in 

these experiments.  
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Chapter 3 – Removal 

Introduction 

Social cues and signals play a major role in driving individual behavioural responses in 

group living animals (Morand-Ferron, Doligez, Dall, & Reader, 2010). Valuable 

information about conditions outside the group, like the presence of food and 

predators are encoded in these cues and signals. They can also be associated with 

within-group properties, like dominance hierarchies and infections (Fernald, 2014; 

Kavaliers & Choleris, 2018). Social interactions can thus play a major role in the 

formation and maintenance of such groups through their effects on individual 

behaviour (Conradt & Roper, 2003). The structure and dynamics of groups can be 

drastically affected by changes in environmental conditions and other natural 

processes (Pruitt & Goodnight, 2014). Group responses to such perturbations relies on 

social interactions within members of the group (Chate et al., 2015; Giardina et al., 

2010; Sinhuber, van der Vaart, & Ouellette, 2019). 

Eusocial insect colonies can contain hundreds if not thousands of individual workers 

and multiple levels of social interactions, across various modalities of communication, 

are present within these colonies (Hölldobler & Wilson, 2009). Usually, multiple 

groups of workers are engaged in various tasks at the same time in these colonies 

(Traniello & Rosengaus, 1997). Interactions within and across these groups are 

essential to maintain the efficient functioning of the colony (Leonhardt, Menzel, 

Nehring, & Schmitt, 2016). Selection in such colonies tends to act at the colony level 

(Fewell, 2003). Thus, social cues and signals present in these groups are mostly 

associated with information regarding the state of the colony and the state of the 

environment as pertaining to its effect on the colony. Social cues and signals play a 

particularly important role in how eusocial colonies respond to perturbations (Crall et 

al., 2018; Garrison, Kleineidam, & Weidenmüller, 2018). 

Individuals in social groups, particularly in eusocial groups, can respond to social cues 

and signals that originate from other individuals within the group as well as from 

individuals in other groups (Grüter & Keller, 2016; Kocher & Cocroft, 2019). Intra-

group interactions are particularly important when groups contain ‘key’ individuals 
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(Keiser, Pruitt, Sih, Watters, & Modlmeier, 2014; King & Cowlishaw, 2009). These 

individuals can have a disproportionate effect on the behavioural responses of other 

group members. For example, they can act as leaders, driving movement and foraging 

patterns of the group (Brown & Irving, 2014; Couzin, Krause, Franks, & Levin, 2005; 

Strandburg-Peshkin, Papageorgiou, Margaret, & Farine, 2018; Sumana & Sona, 2013). 

The cues and signals they produce can also have inhibitory effects on the activity of 

other group members (Clarke & Faulkes, 1997). Inter-group interactions can also have 

stimulatory or inhibitory effects on individuals within social insect groups. In this 

case, most individuals would experience the same stimuli, although there would still 

be inter-individual differences in the response to these cues (Beshers & Fewell, 2001). 

In honey bee forager groups, both intra- and inter-group interactions affect the 

foraging and dance behaviour (Walter M Farina, 1996; Seeley, 1989, 1995). Intra-group 

interactions include stimulatory signals like the waggle dance and inhibitory signals 

like the stop signal (Nieh, 2010; von Frisch, 1967). When foragers are trained to a food 

source at a particular time, they tend to follow dances from other foragers in the 

forager group exclusively during that time (Moore, Siegfried, Wilson, & Rankin, 1989). 

Foragers, which have experienced predation or overcrowding at a food source, target 

other foragers active at the same food source with stop signals (Kietzman & Visscher, 

2015; Lau & Nieh, 2010; Tan et al., 2016; Thom, 2003). These signals serve to reduce 

the motivation of these foragers to recruit to and forage at that food source. Previous 

work has also shown that individuals differ in their dance activity within forager 

groups (Seeley, 1994). However, no studies have looked at whether ‘key’ individuals 

may be present within these groups. 

Inter-group interactions are also present between foragers and other nest mates 

engaged in various tasks in the same spatial location within the hive. Returning nectar 

foragers unload the food they have brought in onto receiver bees (Seeley, 1989, 1995). 

Multiple aspects of their interactions with these receivers influences the motivation of 

foragers to recruit to the food source. The wait time that foragers face before 

unloading has been shown to correlate with the nectar influx into the colony as well as 

the colony food stores (Seeley, 1989). Trophallactic interactions with receivers also 

modulate the dance activity of nectar foragers (De Marco & Farina, 2001; W M Farina, 
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2000). Foragers also receive inhibitory stop signals from guard bees or other foragers 

in case of predation close to the colony entrance (Tan et al., 2016). In such a situation 

these signals can drastically reduce the motivation of foragers to fly out to gather food 

for the colony. 

In this chapter, I manipulate the social environment experienced by individuals in a 

forager group by removing some of the foragers. I remove either the foragers most 

active in their recruitment behaviour (High Removal, HR) or the foragers least active 

in their recruitment behaviour (Low Removal, LR). If group members had 

disproportionate effects on the activity of others in the forager group, then the HR and 

the LR experiments would have different effects. Contrarily, if all individual foragers 

respond similarly to the changing group composition, then the HR and the LR 

experiments would have similar effects on the dance activity. Finally, if individual 

variation in dance activity is not modulated by the changing social environment, then 

neither the HR nor the LR would have an effect on their dance activity. I also compare 

the changes at the group level and at the individual forager level in these experiments. 

Individual level observations of behavioural responses to social cues and signals in 

honey bee forager groups are vital to understand how these groups responds to 

perturbations like changing environmental conditions. 

Materials and Methods 

Apis mellifera colonies 

The maintenance of the colonies used in these experiments followed the same 

protocol as in chapter 2. 

Forager training 

The protocol for training the foragers in these experiments were the same as described 

earlier in chapter 2. 

Individual Identification 

The protocol for tagging and identifying individuals in these experiments were the 

same as described earlier in chapter 2. 
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Experimental Protocol 

The experiments were started 2 days after the tagging process and consisted of 6 

consecutive days of observation of the individually marked foragers (except in the case 

of 3 experimental repeats, where observations could only be done for 5 days, see Table 

3.1). All experiments were started when there were at least 12 foragers coming to the 

feeder. After this, any other marked individual forager was caught and put on ice for 

the duration of the observations on that day. All unmarked recruits that were coming 

to the feeder during this time were also caught and put on ice till the end of the 

observation period on each day. 

On each day, the observations lasted for 3 hours. The feeder was filled with 1M sucrose 

during the first hour, 2M during the second hour and 1M again during the third hour, 

following an established experimental protocol (Seeley, 1994). During these 3 hours, 

the foraging and dance activity of the individual foragers were observed.  

Table 3.1 

Forager 

group 

Name 

Month Year Number of 

Experimental 

Days 

Forager 

group 

Size 

Number 

of 

Foragers 

Removed 

Colony 

H1* January 2014 5 8 2 1 

H2* January 2014 5 11 4 1 

H3 February 2014 6 7 3 1 

H4 February 2014 6 10 4 1 

H5 April 2014 6 9 2 2 

H6 February 2016 6 12 4 3 

H7 April 2016 6 8 3 4 

H8 September 2016 6 8 4 5 

L1+ October 2016 5 10 3 6 

L2 November 2016 6 12 4 7 

L3 November 2016 6 11 4 7 

L4 January 2017 6 11 4 8 
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Table 3.1: The identity of the forager group, the month and year when the group was observed, the 

number of experimental days, the forager group size and the colony to which the forager group 

belonged to in the removal experiments. Forager groups starting with the ‘H’ represent groups in which 

the High Removal (HR) experiments were done, whereas groups starting with the ‘L’ represent groups 

in which the Low Removal (LR) experiments were done. Forager groups marked with an * had a 2-day 

pre-removal observation phase and groups marked with a + had a 2-day post-removal observation 

phase. 

 

Two observers were present at the feeder throughout the 3 hours. One of them noted 

the time when each forager landed at the feeder with a resolution of one minute. The 

other caught all the recruits that were coming to the feeder to keep the individually 

marked foragers motivated to dance throughout the experiments (Seeley, 1995). Near 

the observation hive, there was another observer who would video record the dances 

of the individually marked foragers. Recordings were made using a Sony Handycam 

(HDR CX260/HDR CX240) at 1080p and 25/50 frames per second. The recordings 

were started when any of the marked individuals started dancing and were stopped 

when none of the marked individuals were dancing. 

The removal experiments consisted of 2 3-day phases; a Pre and a Post-removal phase 

(Fig. 3.1). The Pre-removal phase was the same as the consistency experiments 

described previously in chapter 2. In two experiments, this phase consisted only of 

observations on 2 consecutive days. On the 4th day, shortly before the observation 

time, 2-4 foragers from the forager group were removed. The Post-removal phase then 

consisted of 3 consecutive days of observation, except in the case of one experiment, 

where it only lasted for 2 days. A total of 76 individuals from 12 different forager 

groups from 8 different colonies were observed during both the Pre and Post-removal 

phases (Table 3.1). 
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Figure 3.1 

 

Figure 3.1: Experimental protocol for the removal experiments. The basic experimental protocol is the 

same as the consistency experiments with 3-hour observations per day. The removal experiments were 

done over 6 days and consisted of 2 phases, a pre-removal phase (days 1-3) and a post-removal phase 

(days 4-6). Some of the foragers from the observed group were removed before the start of observations 

on day 4. Two types of removal experiments were done, high removal (HR) in which the foragers most 
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active in the recruitment process were removed and low removal (LR) in which the least active foragers 

were removed (see Table 3.2). 

 

Removal of Foragers 

Two types of removal experiments were done; one in which the most active foragers 

were removed (high removal (HR), 8 replicates, H1 to H8) and another in which the 

least active foragers were removed (low removal (LR), 4 replicates, L1 to L4). This was 

to understand whether forager groups were made up of ‘key’ individuals, who would 

have a disproportionate effect on the other foragers. If the HR and LR experiments 

affected foragers differently, then it is likely that either the high dance activity foragers 

or the low dance activity foragers are key individuals in the forager group, based on 

whether the HR or the LR had the greater effect on the activity of the remaining 

foragers. In contrast, if both HR and LR affected the remaining individuals similarly, 

then foragers in the group are likely responding to the loss of foragers from the group 

itself and not to the identity of the individuals removed. Finally, if neither HR or LR 

had an effect on the remaining foragers, then the dance activity of foragers within 

these groups only depends on environmental conditions (like food reward) and not on 

social conditions (like the composition of the forager group). 

In the HR replicates, only those foragers were removed who were more active than the 

average pre-removal activity level of the whole forager group (Table 3.2). A maximum 

of 4 most active foragers which had contributed to at least 50% of the total dance 

activity of the group before the removal (except in one forager group H5) were 

removed. In the LR replicates, only those foragers were removed whose activity was 

less than the average activity of the whole forager group (Table 3.2). A maximum of 4 

least active foragers who had contributed to at most 20% of the total dance activity of 

the group before the removal were removed. There was no significant difference (two-

tailed t-test, t = 0.53, df = 9.38, p = 0.61) in the percentage of foragers removed from 

both sets of replicates (HR, n = 8, mean ± standard deviation = 35.91% ± 9.09%; LR, n 

= 4, mean ± standard deviation = 34.01% ± 3.03%). 
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Table 3.2 

Forager 

Group Name 

Forager 

Group Size 

Number of 

Foragers 

Removed 

(Average 

Individual 

Activity/Average 

Group Activity) of 

Removed 

Foragers 

Percentage 

Contribution 

of Removed 

Foragers to 

Total Pre-

Removal 

Activity 

H1 8 2 2.94, 1.10 50.40 

H2 11 4 2.44,1.73,1.45,1.09 61.12 

H3 7 3 1.62,1.56,1.39 65.34 

H4 10 4 1.82,1.80,1.65,1.38 66.60 

H5 9 2 1.99,1.91 43.35 

H6 12 4 1.77,1.61,1.45,1.44 52.19 

H7 8 3 2.21,1.80,1.48 66.56 

H8 8 4 1.44,1.27,1.18,1.11 62.44 

L1 10 3 0.26,0.75,0.76 17.77 

L2 12 4 0.16,0.36,0.50,0.60 13.46 

L3 11 4 0.19,0.36,0.42,0.50 10.80 

L4 11 4 0.20,0.20,0.34,0.56 12.88 

 

Table 3.2: The parameters by which the foragers were removed in the removal experiments. The initial 

size of the forager group, the number of foragers removed for each group, along with the ratio of the 

average activity of the removed foragers to the average activity of the whole group, and the percentage 

contribution of the removed foragers to the total activity of the whole group before the removal is 

given. The ratio of the average individual activity to the average group activity was used to decide which 

forgers were removed. Foragers which were more active than the group average (ratio > 1) were 

removed in the High Removal (HR) and foragers which were less active than the group average (ratio < 

1) were removed in the Low Removal (LR). The percentage contribution of the foragers to the total pre-

removal activity of each forager group is also provided. In HR, up to the 4 most active foragers were 

removed which had contributed to at least 50% of the total dance activity (except in H5). In LR, up to 

the 4 least active foragers were removed which had contributed to at most 20% of the total dance 

activity. 
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Video Analysis 

The recorded dances of the foragers were then analysed manually using the open 

source VLC Media Player. Since the feeder location was very close to the hive, most 

foragers did dances with very short waggle phases (Gardner, Seeley, & Calderone, 

2008). The total number of circuits performed by each forager during each dance was 

obtained from the videos. Each dance circuit involved the forager walking in a circular 

path with a short waggling motion of her abdomen at the end of the path (Sen Sarma, 

Esch, & Tautz, 2004).  

Statistical Analysis 

The statistical analysis focussed on 6 different behavioural parameters estimated for 

each bee for each day. They were: 1) total number of dance circuits, 2) total number of 

dances, 3) total number of foraging trips, 4) the probability of dancing (the ratio of the 

total number of dances to the total number of trips), 5) the ratio of the total number 

of circuits to the total number of dances (referred to as Circuits/Dances) and 6) the 

ratio of the total number of circuits to the total number of trips (referred to as 

Circuits/Trips). The last two ratios are different methods of calculating the intensity of 

the dances made by the foragers. Circuits/dances gives an estimate of how much a 

forager dances on average and is a good proxy for how rewarding the food source is 

(Seeley, 1994). On the other hand, the circuits/trips parameter provides an estimate 

for the intensity of the dances normalised to differences in the number of foraging 

trips made by different foragers over the 6 days. All 6 parameters were calculated from 

the total activity of each forager over 3 hours. 

The analysis of the removal experiments was done at the level of the forager group and 

at the level of the individual forager to compare the responses at the two different 

levels. Only data from those experimental foragers that were remaining after the 

removal were used in this analysis (76 individuals). Further, at each level, the analysis 

was done to address two specific questions: 1) which forager groups/individual 

foragers showed a change in activity due to the removal and 2) which predictors 

correlated with this change? 
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Linear mixed effects models (LMMs) were built to compare the Pre and Post-removal 

activity of each forager group/individual forager. The 6 parameters were the response 

variables, an interaction term between the variable of interest (forager 

groups/individual foragers; both categorical variables) and the removal (a categorical 

variable of 2 levels, Pre and Post) was the predictor and the observation number was a 

random effect in the models. The parameters were scaled to normalise them with a 

mean of zero and a standard deviation of one. For the forager group level analysis, the 

scaling was done over each individual forager’s activity throughout the experiment. 

This allowed comparisons of the average group activity without the confounding of 

individual differences in activity. For the individual forager level analysis, the scaling 

was done over each forager group’s activity throughout the experiment to compare 

across parameters and forager groups. Data from each forager group was analysed 

separately at the level of the individual forager.  

To identify which predictors correlated with the change in activity shown by forager 

groups, model comparisons were done (Table 3.3). Sets of generalized linear models 

(GLMs) were built with the difference in mean activity between Post and Pre-removal 

condition in the parameters as the response variables (obtained from the previous 

analysis), different predictors in each model and a Gaussian error distribution. A cut-

off value of 95% Akaike weights was used to shortlist models (Wagenmakers & Farrell, 

2004). Only those predictors in these models with a large model averaged effect size 

and confidence intervals not overlapping zero at the 95% confidence level were 

considered to be significantly correlated with the difference in activity in the forager 

groups.  

LMMs were built to test if individual differences in activity after the removal 

correlated with the Pre-removal ranking (in the 3 parameters and in circuits, dances 

and trips) amongst the remaining foragers. The response variable was the difference in 

mean activity between Post and Pre-removal condition of individuals in the 6 

parameters. Separate models were built for each parameter with the same set of six 

predictors and with the forager group as a random effect. For each of the parameters, 

data from only those forager groups in which at least one forager showed a significant 

change were used in this analysis. The effect sizes and bootstrapped confidence 
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intervals of each of the predictors were used to determine which predictor had an 

important effect on the response variable.  

Table 3.3 

Predictor Number of Models 

Present In 

Model Numbers 

Colony Experience 5 1,7,8(*),9(*),10(*), 11(*) 

Year 1 2 

Month 3 2,7,8(*) 

Forager group Size 5 3,9(*),12(*),14,15 

Number of Foragers 

Removed 

5 3,10(*),13(*),16,17 

Proportion of Foragers 

Removed 

6 4,11(*),12(*),13(*),18,19 

Average Circuits (Pre-

Removal) 

5 5,14,16,18,20 

Average Intensity (Pre-

Removal) 

5 5,14,16,18,20 

Average Trips (Pre-Removal) 5 5,14,16,18,20 

Average Circuits (Post-

Removal) 

5 6,15,17,19,20 

Average Circuits/Dances 

(Post-Removal) 

5 6,15,17,19,20 

Average Trips (Post-

Removal) 

5 6,15,17,19,20 

 

Table 3.3: Predictors used for model comparisons along with the number of models they are present in 

and the model numbers used for the analysis of the removal experiments at the forager group level. 

Model numbers with (*) indicate that an interaction term is present in the model between the two 

predictors with the same model number. 

 

LMMs were built using the nlme (Pinheiro, Bates, DebRoy, Sarkar, & Team, 2018) and 

lme4 package (Bates, Mächler, Bolker, & Walker, 2015) and multiple comparisons and 
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p value adjustments were done using the glht function in the multcomp package 

(Hothorn, Bretz, & Westfall, 2008). Generalized linear models were built using the 

base stats package and model selection and averaging was done using the MuMIn 

package (Barton, 2017) in R (R Core Team, 2018). All the graphs were made in R using 

the ggplot2 (Wickham, 2016) and cowplot (Claus O. Wilke, 2018) package. 

Results 

Dance Circuits 

High Removal and Low Removal 

The removal of the more active dancers (HR) and the less active dancers (LR) had a 

similar effect on the dance circuits at the forager group level (Fig. 3.2 a; HR vs LR: n = 

8 vs 4, scaled mean ± standard deviation = 0.6065 ± 0.4181 vs -0.0157 ± 0.6360, 

difference estimate = -0.6221, CI = -1.2957 – 0.0515, p = 0.0666). At the individual 

level also, both HR and LR experiments had a similar effect (Fig. 3.3 a; HR vs LR: n = 

47 vs 29, scaled mean ± standard deviation = 0.5178 ± 0.7654 vs -0.0015 ± 0.8539, 

difference estimate = -0.5589, CI = -1.1830 – 0.0651, p = 0.0739). 

Since both HR and LR had similar effects, data from all 12 experimental repeats were 

grouped together for further analysis. 

Forager group level analysis 

The removal of foragers led to a significant change in the average dance circuits of 2 

out of 12 forager groups observed (Fig. 3.4 a). Both these forager groups (H4 and H7) 

showed an increase in their average dance circuits. 

The model comparisons showed that the important predictors for the change in 

average dance circuits of the forager group were the proportion of foragers removed, 

the forager group size, the number of foragers removed and the colony experience 

(number of experiments done with the colony) (Table 3.4). Of these, only the 

proportion of foragers removed had a large effect size and it had a significant positive 

correlation with the change in activity (effect size = 4.497, CI = 0.266 – 8.728, p = 

0.037). Forager group size (effect size = -0.268, CI = -0.502 – -0.034, p = 0.025) had a 

smaller effect size with a significant negative correlation. The number of foragers 
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removed (effect size = 0.491, CI = -0.014 – 0.997, p = 0.057) and the colony experience 

(effect size = 0.203, CI = -0.167 – 0.574, p = 0.282) both had small non-significant 

positive correlations with the change in the average probability of dancing of forager 

groups. 

Individual forager level analysis 

The removal of foragers led to a significant change in the dance circuits of 12 out of 76 

foragers from 8 out of 12 forager groups observed (Fig. 3.5, 3.6 and 3.17 a). 9 foragers 

from 7 different forager groups (2 foragers from H1, 1 from H3, 2 from H4, 1 from H7, 1 

from L2, 1 from L3, 1 from L4) showed an increase in their dance circuits. 3 foragers 

from 3 different forager groups (1 forager each from H1, l1 and L3) showed a decrease 

in their dance circuits. 

To identify the correlation between the change in dance circuits and the activity level 

of individual foragers before the removal, only data from the 8 forager groups in which 

at least one forager showed a significant change in its dance circuits were considered. 

The change in dance circuits at the individual forager level did not correlate with the 

pre-removal ranking in any of the 6 parameters (Fig. 3.19 a). 

Comparison of group level and individual level responses 

In the total dance circuits, two forager groups (H4 and H7) showed a change after the 

removal, whereas some individual foragers in 8 forager groups (H1, H3, H4, H7, L1, L2, 

L3 and L4) showed a significant change in their activity after the removal. Thus, in the 

case of 6 forager groups, although there was no significant change in activity at the 

group level, some individual foragers showed a significant change in activity. 

Number of Dances 

High Removal and Low Removal 

The removal of the more active dancers (HR) and the less active dancers (LR) had a 

similar effect on the number of dances at the forager group level (Fig. 3.2 b; HR vs LR: 

n = 8 vs 4, scaled mean ± standard deviation = 0.8142 ± 0.5218 vs 0.2359 ± 0.4576, 

difference estimate = -0.5783, CI = -1.2652 – 0.1085, p = 0.0901). At the individual 

level also, both HR and LR experiments had a similar effect (Fig. 3.3 b; HR vs LR: n = 
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47 vs 29, scaled mean ± standard deviation = 0.7176 ± 0.7135 vs 0.2074 ± 0.9519, 

difference estimate = -0.5445, CI = -1.1196 – 0.0305, p = 0.0611). 

Since both HR and LR had similar effects, data from all 12 experimental repeats were 

grouped together for further analysis. 

 

Figure 3.2 

 

Figure 3.2: Boxplots of the change in activity in all 6 parameters after the High Removal (HR) and Low 

Removal (LR) experiments. Each circle represents the change in scaled activity shown by a single 

forager group (n = 12). Green circles represent groups which showed a significant change in activity 

while grey circles represent groups which did not show any significant change in activity. There were no 
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significant differences in the change in activity shown by forager groups between the two types of 

removals (HR vs LR) in any of the 6 parameters. 

Figure 3.3 

 

Figure 3.3: Boxplots of the change in activity in all 6 parameters after the High Removal (HR) and Low 

Removal (LR) experiments. Each circle represents the change in scaled activity shown by a single 

forager (n = 76). Green circles represent individuals which showed a significant change in activity while 

grey circles represent individuals which did not show a significant change in activity. There were no 

significant differences in the change in activity shown by foragers between the two types of removals 

(HR vs LR) in any of the 6 parameters. 
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Figure 3.4 

 

Figure 3.4: The difference in the average scaled activity between post-removal and pre-removal phase of 

12 forager groups in all 6 parameters. Circles represent the difference estimate obtained from linear 

mixed effects models and the error bars represent the 95% confidence intervals around this estimate. 

Circles and error bars are colour coded based on the significance and the direction of change. Red 

represents groups which showed a significant increase, blue represents groups which showed a 

significant decrease and grey represents groups which showed no significant change. 
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Table 3.4 

Parameter Predictor Effect Size 

(Confidence 

Interval) 

Relative 

Importance of 

Predictor 

(p Value) 

dAIC of Model 

containing 

Predictor 

(Cumulative 

Weight) 

Dance 

Circuits 

Proportion of 

foragers removed 

4.497 

(0.266 – 0.728) 

0.72 

(0.037) 

0.00  

(0.681) 

Forager group 

size 

-0.268 

(-0.502 – -0.034) 

0.17 

(0.025) 

2.94 

(0.157) 

Number of 

foragers 

removed 

0.491 

(-0.014 – 0.997) 

0.17 

(0.057) 

2.94 

(0.157) 

Colony 

experience 

0.203  

(-0.167 – 0.574) 

0.11 

(0.282) 

3.67 

(0.109) 

Number of 

Dances 

Proportion of 

foragers removed 

5.765 

(2.435 – 9.095) 

0.87 

(0.001) 

0.00 

(0.836) 

Forager group 

size 

-0.290 

(-0.482 – -0.099) 

0.13 

(0.003) 

3.86 

(0.122) 

Number of 

foragers 

removed 

0.648 

(0.234 – 1.061) 

0.13 

(0.002) 

3.86 

(0.122) 

Number of 

Foraging 

Trips 

Proportion of 

foragers 

removed 

1.388 

(-3.138 – 5.914) 

0.46 

(0.548) 

0.00 

(0.436) 

Colony 

experience 

-0.093 

(-0.435 – 0.248) 

0.44 

(0.593) 

0.11 

(0.413) 

Average circuits 

(Post-Removal) 

-0.001 

(-0.003 – 0.002) 

0.10 

(0.818) 

3.17 

(0.090) 

Average 

circuits/dances 

(Post-removal) 

0.016 

(-0.107 – 0.138) 

0.10 

(0.800) 

3.17 

(0.090) 

Average trips 

(Post-removal) 

0.037 

(0.006 – 0.071) 

0.10 

(0.019) 

3.17 

(0.090) 
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Probability 

Proportion of 

foragers removed 

6.331 

(1.918 – 10.744) 

0.62 

(0.005) 

0.00 

(0.591) 

Forager group 

size 

-0.377 

(-0.605 – -0.149) 

0.32 

(0.002) 

1.31 

(0.307) 

Number of 

foragers 

removed 

0.692 

(0.199 – 1.185) 

0.32 

(0.006) 

1.31 

(0.307) 

Colony 

experience 

0.339 

(-0.067 – 0.745) 

0.05 

(0.101) 

4.87 

(0.052) 

Circuits/ 

Dances 

Proportion of 

foragers 

removed 

-0.981 

(-5.560 – 3.589) 

0.53 

(0.675) 

0.00 

(0.492) 

Colony 

experience 

-0.023 

(-0.371 – 0.325) 

0.47 

(0.897) 

0.24 

(0.435) 

Circuits/ 

Trips 

Proportion of 

foragers 

removed 

4.615 

(-0.905 – 10.135) 

0.49 

(0.101) 

0.00 

(0.469) 

Colony 

experience 

0.307 

(-0.123 – 0.737) 

0.32 

(0.161) 

0.86 

(0.305) 

Forager group 

size 

-0.322 

(-0.616 – -0.029) 

0.18 

(0.032) 

1.98 

(0.174) 

Number of 

foragers 

removed 

0.485 

(0.149 – 1.119) 

0.18 

(0.134) 

1.98 

(0.174) 

 

Table 3.4: Results of model comparisons done to look at what predictors correlated with the change in 

activity of forager groups in each of the 6 parameters. The important predictors and their effect sizes, 

confidence intervals, p values, relative importance, the number of models the predictor is present in, 

dAIC and cumulative weight of the corresponding model is provided for all parameters. Predictors are 

represented with numbers, with 1 for Proportion of Foragers Removed, 2 for Forager Group Size, 3 for 

Number of Foragers Removed, 4 for Colony Experience, 5 for Average Circuits (Post-Removal), 6 for 

Average Circuits/Dances (Post-Removal), and 7 for Average Trips (Post-Removal). Predictors highlighted 

in italics in the table were considered to show strong correlations with the parameter of interest as they 

had large effect sizes with confidence intervals not overlapping zero. 
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Figure 3.5 
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Figure 3.5: The total dance circuits made by all individuals observed from each of the 8 forager groups 

in the High Removal (HR) experiments. Each forager within a forager group is represented by a 

different colour. Triangles with dotted lines represent foragers which were removed as part of the 

experiment after the pre-removal phase. Circles with solid lines represent foragers which showed a 

significant change in activity after the removal. Circles with dashed lines represent foragers which did 

not show a significant change in activity after the removal. 

 

Figure 3.6 

 

Figure 3.6: The total dance circuits made by all individuals observed from each of the 4 forager groups 

in the Low Removal (LR) experiments. Each forager within a forager group is represented by a different 

colour. Triangles with dotted lines represent foragers which were removed as part of the experiment 

after the pre-removal phase. Circles with solid lines represent foragers which showed a significant 

change in activity after the removal. Circles with dashed lines represent foragers which did not show a 

significant change in activity after the removal. 
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Forager group level analysis 

The removal of foragers led to a significant change in the average number of dances of 

5 out of 12 forager groups observed (Fig. 3.4 b). All 5 forager groups (H3, H4, H6, H7 

and H8) showed an increase in their average number of dances. 

The model comparisons showed that the important predictors for the change in 

average number of dances of the forager group were the proportion of foragers 

removed, the forager group size and the number of foragers removed (Table 3.4). Of 

these, only the proportion of foragers removed had a large effect size and it had a 

significant positive correlation with the change in activity (effect size = 5.765, CI = 

2.435 – 9.095, p = 0.001). Forager group size (effect size = -0.290, CI = -0.482 – -

0.099, p = 0.003) and the number of foragers removed (effect size = 0.648, CI = 0.234 

– 1.061, p = 0.002) had smaller effect sizes with a significant negative and positive 

correlation respectively. 

Individual forager level analysis 

The removal of foragers led to a significant change in the number of dances of 18 out 

of 76 foragers from 10 out of 12 forager groups observed (Fig. 3.7, 3.8 and 3.17 b). 16 

foragers from 8 different forager groups (2 foragers from H1, 1 from H2, 3 from H3, 4 

from H4, 1 from H7, 3 from H8, 1 from L3 and 1 from L4) showed an increase in their 

number of dances. 2 foragers from 2 different forager groups (1 forager each from L1 

and L2) showed a decrease in their number of dances. 

To identify the correlation between the change in number of dances and the activity 

level of individual foragers before the removal, only data from the 10 forager groups in 

which at least one forager showed a significant change in its number of dances were 

considered. The change in the number of dances at the individual forager level did not 

correlate with the pre-removal ranking in any of the 6 parameters (Fig. 3.19 b). 
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Figure 3.7 

 



 Chapter 3 – Removal | Results 
 

83 
 

Figure 3.7: The number of dances made by all individuals observed from each of the 8 forager groups in 

the High Removal (HR) experiments. Each forager within a forager group is represented by a different 

colour. Triangles with dotted lines represent foragers which were removed as part of the experiment 

after the pre-removal phase. Circles with solid lines represent foragers which showed a significant 

change in activity after the removal. Circles with dashed lines represent foragers which did not show a 

significant change in activity after the removal. 

 

Figure 3.8 

 

Figure 3.8: The number of dances made by all individuals observed from each of the 4 forager groups in 

the Low Removal (LR) experiments. Each forager within a forager group is represented by a different 

colour. Triangles with dotted lines represent foragers which were removed as part of the experiment 

after the pre-removal phase. Circles with solid lines represent foragers which showed a significant 

change in activity after the removal. Circles with dashed lines represent foragers which did not show a 

significant change in activity after the removal. 
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Comparison of group level and individual level responses 

In case of number of dances, only 5 forager groups (H3, H4, H6, H7 and H8) showed a 

change after the removal. Whereas some individual foragers in 10 forager groups (H1, 

H2, H3, H4, H7, H8, L1, L2, L3 and L4) showed a significant change in their activity 

after the removal. Thus, in the case of 5 forager groups, although there was no 

significant change in activity at the group level, some individual foragers showed a 

significant change in activity. Interestingly, even though one forager group (H6) 

showed a change at the group level, there were no individual foragers which showed a 

significant change in activity in this group. 

Foraging Trips 

High Removal and Low Removal 

The removal of the more active dancers (HR) and the less active dancers (LR) had a 

similar effect on the number of foraging trips at the forager group level (Fig. 3.2 c; HR 

vs LR: n = 8 vs 4, scaled mean ± standard deviation = 0.5562 ± 0.5349 vs 0.0972 ± 

0.1805, difference estimate = -0.4591, CI = -1.0844 – 0.1662, p = 0.1329). At the 

individual level also, both HR and LR experiments had a similar effect (Fig. 3.3 c; HR 

vs LR: n = 47 vs 29, scaled mean ± standard deviation = 0.4249 ± 0.8049 vs -0.0147 ± 

0.8784, difference estimate = -0.4197, CI = -1.0077 – 0.1682, p = 0.1428). 

Since both HR and LR had similar effects, data from all 12 experimental repeats were 

grouped together for further analysis. 

Forager group level analysis 

The removal of foragers led to a significant change in the average number of foraging 

trips of 2 out of 12 forager groups observed (Fig. 3.4 c). Both these forager groups (H6 

and H7) showed an increase in their average number of foraging trips. 

The model comparisons showed that the important predictors for the change in 

average foraging trips of the forager group were the proportion of foragers removed, 

the colony experience (number of experiments done with the colony), the average 

Post-removal circuits done by the forager group, the average Post-removal 

circuits/dances of the forager group and the average Post-removal number of foraging 
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trips done by the forager group (Table 3.4). Of these, only the average Post-removal 

number of foraging trips showed a significant correlation, but with a small positive 

effect size (effect size = 0.037, CI = 0.006 – 0.071, p = 0.019). The proportion of 

foragers removed (effect size = 1.388, CI = -3.138 – 5.914, p = 0.548) had a relatively 

larger effect size but the correlation was not significant. Colony experience (effect size 

= -0.093, CI = -0.435 – 0.248, p = 0.593) and the average Post-removal circuits (effect 

size = -0.001, CI = -0.003 – 0.002, p = 0.818) both had small negative effect sizes 

which were not significantly correlated. The average post-removal circuits/dances 

(effect size = 0.016, CI = -0.107 – 0.138, p = 0.800) had a small positive effect size 

which was not significantly correlated. 

Individual forager level analysis 

The removal of foragers led to a significant change in the number of foraging trips of 

12 out of 76 foragers from 8 out of 12 forager groups observed (Fig. 3.9, 3.10 and 3.17 c). 

9 foragers from 6 different forager groups (1 forager from H1, 1 from H2, 3 from H6, 1 

from H7, 2 from H8 and 1 from L3) showed an increase in their number of foraging 

trips. 3 foragers from 3 different forager groups (1 forager each from H1, H3 and L2) 

showed a decrease in their number of foraging trips. 

To identify the correlation between the change in number of foraging trips and the 

activity level of individual foragers before the removal, only data from the 8 forager 

groups in which at least one forager showed a significant change in its number of 

foraging trips were considered. The change in the number of foraging trips at the 

individual forager level did not correlate with the pre-removal ranking in any of the 6 

parameters (Fig. 3.19 c). 

Comparison of group level and individual level responses 

In the number of foraging trips made, only 2 forager groups (H6 and H7) showed a 

change after the removal. Whereas some individual foragers in 8 forager groups (H1, 

H2, H3, H6, H7, H8, L2 and L3) showed a significant change in their activity after the 

removal. Thus, in the case of 6 forager groups, although there was no significant 

change in activity at the group level, some individual foragers showed a significant 

change in activity. 
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Figure 3.9 
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Figure 3.9: The number of foraging trips made by all individuals observed from each of the 8 forager 

groups in the High Removal (HR) experiments. Each forager within a forager group is represented by a 

different colour. Triangles with dotted lines represent foragers which were removed as part of the 

experiment after the pre-removal phase. Circles with solid lines represent foragers which showed a 

significant change in activity after the removal. Circles with dashed lines represent foragers which did 

not show a significant change in activity after the removal. 

 

Figure 3.10 

 

Figure 3.10: The number of foraging trips made by all individuals observed from each of the 4 forager 

groups in the Low Removal (LR) experiments. Each forager within a forager group is represented by a 

different colour. Triangles with dotted lines represent foragers which were removed as part of the 

experiment after the pre-removal phase. Circles with solid lines represent foragers which showed a 

significant change in activity after the removal. Circles with dashed lines represent foragers which did 

not show a significant change in activity after the removal. 
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Probability of Dancing 

High Removal and Low Removal 

The removal of the more active dancers (HR) and the less active dancers (LR) had a 

similar effect on the probability of dancing at the forager group level (Fig. 3.2 d; HR vs 

LR: n = 8 vs 4, scaled mean ± standard deviation = 0.6904 ± 0.7236 vs 0.2509 ± 

0.4860, difference estimate = -0.4395, CI = -1.3419 – 0.4628, p = 0.3033). At the 

individual level also, both HR and LR experiments had a similar effect (Fig. 3.3 d; HR 

vs LR: n = 47 vs 29, scaled mean ± standard deviation = 0.5388 ± 0.8025 vs 0.2088 ± 

0.9007, difference estimate = -0.4064, CI = -1.1358 – 0.3229, p = 0.2427). 

Since both HR and LR had similar effects, data from all 12 experimental repeats were 

grouped together for further analysis. 

Forager group level analysis 

The removal of foragers led to a significant change in the average probability of 

dancing of 5 out of 12 forager groups observed (Fig. 3.4 d). All 5 forager groups (H3, 

H4, H7, H8 and L2) showed a significant increase in their average probability of 

dancing. 

The model comparisons showed that the important predictors for the change in 

average probability of dancing of the forager group were the proportion of foragers 

removed, the forager group size, the number of foragers removed and the colony 

experience (number of experiments done with the colony) (Table 3.4). Of these, only 

the proportion of foragers removed had a large effect size and it had a significant 

positive correlation with the change in activity (effect size = 6.331, CI = 1.918 – 10.744, 

p = 0.005). Forager group size (effect size = -0.377, CI = -0.605 – -0.149, p = 0.002) 

and the number of foragers removed (effect size = 0.692, CI = 0.199 – 1.185, p = 0.006) 

had smaller effect sizes with a significant negative and positive correlation 

respectively. The colony experience had a small non-significant correlation with the 

change in the average probability of dancing of forager groups (effect size = 0.339, CI = 

-0.067 – 0.745, p = 0.101). 
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Figure 3.11 

 



 Chapter 3 – Removal | Results 
 

90 
 

Figure 3.11: The probability of dancing of all individuals observed from each of the 8 forager groups in 

the High Removal (HR) experiments. Each forager within a forager group is represented by a different 

colour. Triangles with dotted lines represent foragers which were removed as part of the experiment 

after the pre-removal phase. Circles with solid lines represent foragers which showed a significant 

change in activity after the removal. Circles with dashed lines represent foragers which did not show a 

significant change in activity after the removal. 

 

Figure 3.12 

 

Figure 3.12: The probability of dancing of all individuals observed from each of the 4 forager groups in 

the Low Removal (LR) experiments. Each forager within a forager group is represented by a different 

colour. Triangles with dotted lines represent foragers which were removed as part of the experiment 

after the pre-removal phase. Circles with solid lines represent foragers which showed a significant 

change in activity after the removal. Circles with dashed lines represent foragers which did not show a 

significant change in activity after the removal. 
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Individual forager level analysis 

The removal of foragers led to a significant change in the dance probability of 20 out 

of 76 foragers from 10 out of 12 forager groups observed (Fig. 3.11, 3.12 and 3.18 a). 18 

foragers from 9 different forager groups (2 foragers from H1, 2 from H2, 2 from H3, 4 

from H4, 2 from H7, 1 from H8, 3 from L2, 1 from L3 and 1 from L4) showed an 

increase in their dance probability. 2 foragers from 2 different forager groups (1 forager 

from L1 and 1 forager from L2) showed a decrease in their dance probability. 

To identify the correlation between the change in probability of dancing and the 

activity level of individual foragers before the removal, only data from the 10 forager 

groups in which at least one forager showed a significant change in its probability of 

dancing were considered. The change in probability of dancing strongly correlated 

with the ranking in pre-removal dance circuits (Fig. 3.19 d; effect size = -0.453, CI = -

0.858 – -0.049, p = 0.029). The pre-removal ranking in the other parameters showed 

no correlation with the change in probability of dancing at the individual forager level. 

Comparison of group level and individual level responses 

In the probability of dancing, only 5 forager groups (H3, H4, H7, H8 and L2) showed a 

change after the removal. Whereas some individual foragers in 10 forager groups (H1, 

H2, H3, H4, H7, H8, L1, L2, L3 and L4) showed a significant change in their activity 

after the removal. Thus, in the case of 5 forager groups, although there was no 

significant change in activity at the group level, some individual foragers showed a 

significant change in activity. 

Circuits/Dances 

High Removal and Low Removal 

The removal of the more active dancers (HR) and the less active dancers (LR) had a 

similar effect on the circuits/dances at the forager group level (Fig. 3.2 e; HR vs LR: n = 

8 vs 4, scaled mean ± standard deviation = -0.3985 ± 0.4002 vs -0.4281 ± 0.7165, 

difference estimate = -0.0296, CI = -0.7334 – 0.6742, p = 0.9272). At the individual 

level also, both HR and LR experiments had a similar effect (Fig. 3.3 e; HR vs LR: n = 
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47 vs 29, scaled mean ± standard deviation = -0.2838 ± 0.6755 vs -0.3768 ± 0.6840, 

difference estimate = -0.1026, CI = -0.6743 – 0.4690, p = 0.6975). 

Since both HR and LR had similar effects, data from all 12 experimental repeats were 

grouped together for further analysis. 

Forager group level analysis 

The removal of foragers led to a significant change in the average circuits/dances of 3 

out of 12 forager groups observed (Fig. 3.4 e). All 3 forager groups (H6, L1 and L3) 

showed a significant decrease in their average circuits/dances. 

The model comparisons showed that the important predictors for the change in 

average circuits/dances of the forager group were the proportion of foragers removed 

and the colony experience (number of experiments done with the colony) (Table 3.4). 

Both proportion of foragers removed (effect size = -0.981, CI = -5.560 – 3.589, p = 

0.675) and the colony experience (effect size = -0.023, CI = -0.371 – 0.325, p = 0.897) 

had small negative effect sizes which did not show a significant correlation with the 

change in average circuits/dances after the removal. 

Individual forager level analysis 

The removal of foragers led to a significant change in the circuits/dances of 9 out of 76 

foragers from 5 forager groups observed (Fig. 3.13, 3.14 and 3.18 b). All 9 foragers from 

5 different forager groups (2 foragers from H1, 1 from H6, 2 from L1, 1 from L2 and 2 

from L3) showed a decrease in their circuits/dances. 

To identify the correlation between the change in circuits/dances and the activity level 

of individual foragers before the removal, only data from the 5 forager groups in which 

at least one forager showed a significant change in its circuits/dances were considered. 

The pre-removal ranking in the 6 parameters showed no correlation with the change 

in circuits/dances at the individual forager level (Fig. 3.19 e). 
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Figure 3.13 
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Figure 3.13: The circuits/dances of all individuals observed from each of the 8 forager groups in the High 

Removal (HR) experiments. Each forager within a forager group is represented by a different colour. 

Triangles with dotted lines represent foragers which were removed as part of the experiment after the 

pre-removal phase. Circles with solid lines represent foragers which showed a significant change in 

activity after the removal. Circles with dashed lines represent foragers which did not show a significant 

change in activity after the removal. 

 

Figure 3.14 

 

Figure 3.14: The circuits/dances of all individuals observed from each of the 4 forager groups in the Low 

Removal (HR) experiments. Each forager within a forager group is represented by a different colour. 

Triangles with dotted lines represent foragers which were removed as part of the experiment after the 

pre-removal phase. Circles with solid lines represent foragers which showed a significant change in 

activity after the removal. Circles with dashed lines represent foragers which did not show a significant 

change in activity after the removal. 
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Comparison of group level and individual level responses 

In circuits/dances, only 3 forager groups (H6, L1 and L3) showed a change after the 

removal. Whereas some individual foragers in 5 forager groups (H1, H6, L1, L2 and L3) 

showed a significant change in their activity after the removal. Thus, in the case of 2 

forager groups, although there was no significant change in activity at the group level, 

some individual foragers showed a significant change in activity. 

Circuits/Trips 

High Removal and Low Removal 

The removal of the more active dancers (HR) and the less active dancers (LR) had a 

similar effect on the circuits/trips at the forager group level (Fig. 3.2 f; HR vs LR: n = 8 

vs 4, scaled mean ± standard deviation = 0.4859 ± 0.6472 vs -0.0539 ± 0.6799, 

difference estimate = -0.5399, CI = -1.4366 – 0.3669, p = 0.209). At the individual level 

also, both HR and LR experiments had a similar effect (Fig. 3.3 f; HR vs LR: n = 47 vs 

29, scaled mean ± standard deviation = 0.3165 ± 0.8238 vs -0.0287 ± 0.8053, 

difference estimate = -0.4143, CI = -1.1737 – 0.3451, p = 0.2521). 

Since both HR and LR had similar effects, data from all 12 experimental repeats were 

grouped together for further analysis. 

Forager group level analysis 

The removal of foragers led to a significant change in the average circuits/trips of 5 out 

of 12 forager groups observed (Fig. 3.4 f). 3 forager groups (H3, H4 and H7) showed an 

increase, whereas 2 forager groups (H6 and L1) showed a decrease in their average 

circuits/trips. 

The model comparisons showed that the important predictors for the change in 

average circuits/trips of the forager group were the proportion of foragers removed, 

colony experience (number of experiments done with the colony), the forager group 

size and the number of foragers removed (Table 3.4). Of these, only forager group size 

had a significant correlation with the change in average circuits/trips after the 

removal, but with a small negative effect size (effect size = -0.322, CI = -0.616 – -0.029, 

p = 0.032). The proportion of foragers removed had a large positive effect size, but the 
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correlation with the change in activity was not significant (effect size = 4.615, CI = -

0.905 – 10.135, p = 0.101). Both the colony experience (effect size = 0.307, CI = -0.123 – 

0.737, p = 0.161) and number of foragers removed (effect size = 0.485, CI = 0.149 – 

1.119, p = 0.134) had small effect sizes and did not correlate significantly with the 

change in average circuits/trips after the removal. 

Individual forager level analysis 

The removal of foragers led to a significant change in the circuits/trips of 12 out of 76 

foragers from 8 out of 12 forager groups observed (Fig. 3.15, 3.16 and 3.18 c). 9 foragers 

from 6 different forager groups (2 foragers from H1, 1 from H3, 2 from H4, 1 from H7, 2 

from L2 and 1 from L4) showed an increase in their circuits/trips. 3 foragers from 3 

different forager groups (1 each from H1, L1 and L3) showed a decrease in their 

circuits/trips. 

To identify the correlation between the change in circuits/trips and the activity level 

of individual foragers before the removal, only data from the 8 forager groups in which 

at least one forager showed a significant change in its circuits/trips were considered. 

The change in circuits/trips strongly correlated with the ranking in pre-removal dance 

circuits (Fig. 3.19 f; effect size = -0.465, CI = -0.926 - -0.003, p = 0.048). The pre-

removal ranking in the other parameters showed no correlation with the change in 

circuits/trips at the individual forager level. 

Comparison of group level and individual level responses 

In circuits/trips, only 5 forager groups (H3, H4, H6, H7 and L1) showed a change after 

the removal. Whereas some individual foragers in 8 forager groups (H1, H3, H4, H7, 

L1, L2, L3 and L4) showed a significant change in their activity after the removal. Thus, 

in the case of 3 forager groups, although there was no significant change in activity at 

the group level, some individual foragers showed a significant change in activity. 

Interestingly, even though one forager group (H6) showed a change at the group level, 

there were no individual foragers which showed a significant change in activity in this 

group. 
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Figure 3.15 
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Figure 3.15: The circuits/trips of all individuals observed from each of the 8 forager groups in the High 

Removal (HR) experiments. Each forager within a forager group is represented by a different colour. 

Triangles with dotted lines represent foragers which were removed as part of the experiment after the 

pre-removal phase. Circles with solid lines represent foragers which showed a significant change in 

activity after the removal. Circles with dashed lines represent foragers which did not show a significant 

change in activity after the removal. 

 

Figure 3.16 

 

Figure 3.15: The circuits/trips of all individuals observed from each of the 4 forager groups in the Low 

Removal (LR) experiments. Each forager within a forager group is represented by a different colour. 

Triangles with dotted lines represent foragers which were removed as part of the experiment after the 

pre-removal phase. Circles with solid lines represent foragers which showed a significant change in 

activity after the removal. Circles with dashed lines represent foragers which did not show a significant 

change in activity after the removal. 
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Figure 3.17 

 

Figure 3.17: The difference in the average scaled activity between post-removal and pre-removal phase 

of 76 foragers from 12 forager groups in (a) total dance circuits, (b) number of dances and (c) number of 

foraging trips. Circles represent the difference estimate (effect size) obtained from linear mixed effects 
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models and the error bars represent the 95% confidence intervals around this estimate. Circles and 

error bars are colour coded based on the significance and the direction of change. Red represents 

foragers which showed a significant increase, blue represents foragers which showed a significant 

decrease and grey represents foragers which showed no significant change. 

 

Comparison of effect of removal on probability versus intensity of dancing 

The removal of foragers affected the probability of dancing of foragers more than the 

intensity of dancing. This was the case when probability was compared against both 

estimates of the intensity of dancing, circuits/dances and circuits/trips. In comparison 

with circuits/dances, individual foragers, on average, showed a greater increase in 

their probability (Fig. 3.20 a; mean ± standard deviation = 0.4129 ± 0.8508 vs -0.3192 

± 0.6757, difference estimate = 0.7322, CI = 0.5443 - 0.9201, p Value < 0.001). 

Similarly, in comparison with circuits/trips, individual foragers, on average, showed a 

greater increase in their probability (Fig. 3.20 b; mean ± standard deviation = 0.4129 ± 

0.8508 vs 0.1848 ± 0.8288, difference estimate = 0.2281, CI = 0.1422 - 0.314, p Value < 

0.001). 

Discussion 

The removal of the most and least active foragers had similar effects on foragers in all 

the parameters of dance activity. At least one forager, in 11 out of 12 forager groups 

observed, showed a change in dance activity in one of the parameters after the 

removal of foragers from the group. At the group level, this change in activity caused 

by the removal of foragers was most correlated with the proportion of foragers 

removed. At the individual level, those individuals which were more active (in the 

dance circuits) before the removal showed greater changes in activity (in probability of 

dancing and circuits/trips) after the removal. 
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Figure 3.18 

 

Figure 3.18: The difference in the average scaled activity between post-removal and pre-removal phase 

of 76 foragers from 12 forager groups in (a) probability of dancing, (b) circuits/dances and (c) 

circuits/trips. Circles represent the difference estimate (effect size) obtained from linear mixed effects 
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models and the error bars represent the 95% confidence intervals around this estimate. Circles and 

error bars are colour coded based on the significance and the direction of change. Red represents 

foragers which showed a significant increase, blue represents foragers which showed a significant 

decrease and grey represents foragers which showed no significant change. 

 

Figure 3.19 

 

Figure 3.19: Results of linear mixed effects models correlating the change in activity of each of the 6 

parameters with the pre-removal activity-based rank in any of the 6 parameters. Circles represent the 

effect size and error bars represent the 95% confidence interval. Red represents those parameters which 

showed a significant correlation while grey represents the parameters which did not show any 

significant correlation. Negative effect sizes indicate that higher pre-removal ranks (and hence lower 

numerical value of the ranks) correlated with a greater change in activity. The pre-removal activity-

based rank in circuits correlated with the change in probability and circuits/trips. None of the other 

parameter-based ranks showed any correlation with the change in any of the parameters due to the 

removal.  
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Figure 3.20 

 

Figure 3.20: Boxplots comparing the change in activity between (a) probability and circuits/dances and 

(b) probability and circuits/trips of the remaining foragers due to the removal. Each circle represents 

the change in scaled activity shown by a single forager (n = 76). Red circles represent individuals which 

showed a significant change in activity while grey circles represent individuals which did not show a 

significant change in activity. Foragers showed a greater increase in their probability of dancing as 

compared to both estimates of the intensity of dancing (circuits/dances and circuits/trips). 

 

High and Low removal experiments 

Our results indicate that the more active individuals in honey bee forager groups are 

not ‘key’ individuals. Key individuals would have a disproportionate effect on the 

activity of the remaining foragers through intra-group interactions (Keiser et al., 

2014). Thus, the presence or absence of these individuals would change the activity of 

the remaining individuals in a group (Couzin et al., 2005; Strandburg-Peshkin et al., 

2018). In this scenario, the removal of the more active individuals should affect the 

remaining individuals, while the removal of other individuals should not. However, 

removal of both the most active and least active individuals similarly affected group 

and individual level activity in our experiments. The remaining foragers are more 

likely changing their activity in response to the general loss of foragers from the group 

and not the identity of the foragers removed (Grüter & Keller, 2016).  
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Effect on forager groups 

In our experiments, the removal of foragers caused an increase in the average 

probability of dancing as well as average number of dances of 5 forager groups. This in 

turn led to an increase in the average total circuits of 2 forager groups. Two forager 

groups also concurrently increased the average number of foraging trips done. 

Interestingly, three forager groups decreased their average circuits/dances after the 

removal of foragers from these groups. However, three forager groups increased their 

circuits/trips while two decreased their average circuits/trips. These results indicate 

that groups prioritised increasing the number of recruitment events happening 

(probability of dances and hence number of dances) as opposed to the duration of 

these recruitment events (circuits/dances and circuits/trips) to compensate for the 

loss of foragers from the group. 

In honey bee forager groups, removal of foragers leads to a decrease in the nectar 

influx into the colony. Previous work has shown that the nectar influx has a strong 

effect on the dance activity at the colony level (De Marco, 2006; W M Farina, 2000; 

Seeley, 1986, 1989, 1992; Seeley & Tovey, 1994). The increase in dance activity in the 

forager groups observed in our experiments was strongly correlated with the 

proportion of foragers removed and not with the absolute number of foragers removed 

from the groups. Thus, the relative change in nectar influx rather than the absolute 

change in nectar influx affected the dance activity of foragers in the group. The 

absolute nectar influx into the colony on any day can vary widely based on the season 

(Al-Ghamdi, Adgaba, Tadesse, Getachew, & Al-Maktary, 2017; Coffey & Breen, 1997; 

Khoury, Barron, & Myerscough, 2013; Sherman & Visscher, 2002). Therefore, to be 

more sensitive to sudden changes in its environment, it is more adaptive for the 

colony to be responsive to the relative change in nectar influx rather than the absolute 

change. 

Effect on individual foragers 

Individual foragers also responded to the removal of other foragers in a manner 

similar to forager groups. Most foragers which showed a change increased their 

probability of dancing (18 foragers from 9 groups) and hence the number of dances 
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they performed (16 foragers from 8 groups). This in turn led to an increase in the total 

number of dance circuits they performed (9 foragers from 7 groups). Some foragers 

also increased the number of foraging trips that they did (9 foragers from 6 groups). 

Foragers also mostly showed an increase in their circuits/trips (9 foragers from 6 

groups). However, foragers which showed a change in circuits/dances only showed a 

decrease in this parameter (9 foragers from 5 groups). Thus, foragers responded to the 

removal of some foragers from the group by increasing the number of recruitment 

events they performed, while some foragers also showed a decrease in the duration of 

these recruitment events. 

Social cues and signals from nest mates provide valuable information to nectar 

foragers which can change their motivation to forage and recruit (W M Farina, 2000; 

Lindauer, 1949; Nieh, 2010; Seeley, 1989). The wait time that a forager faces before 

unloading nectar to a receiver is a reliable indicator of the nectar influx into the colony 

as well as the nutritional state of the colony (Lindauer, 1949; Seeley, 1989; Seeley & 

Tovey, 1994). At the same time, trophallactic interactions with receivers also can 

provide information to the forager about the colony need for that food source (De 

Marco, 2006; W M Farina, 2000; Walter M Farina, 1996; Lindauer, 1954). 

Experimental manipulations have shown that foragers modulate their dance activity in 

response to a change in these cues (De Marco, 2006; W M Farina, 2000; Seeley, 1989).  

Our results indicate that the more active individuals were more responsive to changes 

in these social cues and signals. Behavioural differences in responses to the same social 

cues could potentially be driven by differences in individual response thresholds to the 

stimulus (Cappa, Bruschini, Cipollini, Pieraccini, & Cervo, 2014; Crall et al., 2018; 

Farine, Aplin, Garroway, Mann, & Sheldon, 2014; Firth, Voelkl, Farine, & Sheldon, 

2015; Michelena, Jeanson, Deneubourg, & Sibbald, 2010; Pendrel & Plowright, 1981; 

Pinter-Wollman, Hubler, Holley, Franks, & Dornhaus, 2012). Our results could be 

explained by differences in individual thresholds to respond to cues from receivers 

causing some individuals to increase their dance activity more (Değirmenci, Thamm, 

& Scheiner, 2018; Scheiner, Page, & Erber, 2001, 2004; Thamm & Scheiner, 2014). 

Alternatively, foragers could have one response threshold linking food reward to 

dance activity which is then further modulated by social cues, in a manner similar to 
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social inhibition models (Beshers & Fewell, 2001; Beshers, Huang, Oono, & Robinson, 

2001; Gordon, Goodwin, & Trainor, 1992; Naug & Gadagkar, 1999). Another factor that 

may play a role in driving these different responses is individual spatial fidelity, which 

would directly affect the interactions and hence information accessible to individuals 

(Crall et al., 2018; Pinter-Wollman, Penn, Theraulaz, & Fiore, 2018). 

The correlation between the pre-removal activity level in dance circuits and the 

change in activity was seen only in the probability of dancing and circuits/trips. The 

lack of a correlation between the change in activity and the predictors tested in the 

other parameters indicates that the exact stimulus that foragers are responding to has 

not been measured in these observations. For example, no social interactions that 

foragers experienced in the hive have been quantified. Future experiments with a 

focus on more detailed observation of the interactions of foragers, particularly with 

receivers, over multiple days is essential to understand the relation between the social 

cues received by foragers and their behavioural decisions. Newer experimental 

methods, like automated tracking of larger numbers of individuals (Wario, Wild, 

Couvillon, Rojas, & Landgraf, 2015), would be especially useful, as the exact function of 

many cues and signals that foragers experience in the hive is still uncertain (De Marco, 

2006; Rivera, Donaldson-Matasci, & Dornhaus, 2015). 

Forager groups and individual foragers 

There were interesting differences in the group level and individual level responses. 

Even in forager groups which did not increase their average activity after the removal, 

there were individual foragers which showed an increase in dance activity. Thus, an 

analysis of only group level changes in dance activity would have led us to conclude 

that the removal has no effect in these forager groups. So far, most studies on the 

honey bee dance communication have focussed on responses at the group level 

(Granovskiy, Latty, Duncan, Sumpter, & Beekman, 2012; Kirchner & Sommer, 1992; 

Seefeldt & De Marco, 2008; Seeley, 1989). The removal experiments show that these 

group level responses do not adequately reflect individual level responses (Gallistel, 

Fairhurst, & Balsam, 2004). This serves to further highlight the need for individual 

level studies on the waggle dance as well as on other behaviours in eusocial insects. 



 Chapter 3 – Removal | Discussion 
 

107 
 

Comparisons with other social groups 

The response of honey bee forager groups to the removal of foragers is similar to how 

other social groups respond to perturbations (Charbonneau, Sasaki, & Dornhaus, 2017; 

Crall et al., 2018; Firth et al., 2017; Rudin, Tomkins, & Simmons, 2018). In eusocial 

insects, a loss of individuals from a group of workers engaged in a task led to new 

individuals performing the same task (Breed, Williams, & Queral, 2002; O’Donnell, 

1998) or to some of the workers in the group increasing their task performance 

(Gardner, Foster, & O’Donnell, 2007; Pendrel & Plowright, 1981; Pinter-Wollman et 

al., 2012). After the removal of individuals from groups of great tits (Parus major), 

their positions in the network were occupied by those individuals closest to them 

(Firth et al., 2017). Spatial positions occupied by individuals can also play a role in 

determining which individuals respond to a change in stimuli by affecting the 

interactions that an individual will be exposed to (Crall et al., 2018; Ireland & Garnier, 

2018; Kamath et al., 2018; Mersch, Crespi, & Keller, 2013; Pinter-Wollman et al., 2018; 

Smith-Aguilar, Ramos-Fernández, & Getz, 2016). The removal of foragers from bumble 

bee colonies caused more centrally located individuals, exposed to more interactions 

in the colony, to initiate foraging (Crall et al., 2018). Thus, individual thresholds and 

spatial fidelity may both play a role in determining which individuals respond to 

perturbations. Individual differences in responding to changing stimuli should play an 

important role in the resilience shown by such diverse groups to perturbations in their 

structure. 

Flexibly responding to changing food availability is essential for the survival of any 

individual or group (Kamil & Roitblat, 1985; Ryer & Olla, 1995; Stephens, Brown, & 

Ydenberg, 2007; J. F.A. Traniello, 1989; Venkataraman, Kraft, Dominy, & Endicott, 

2017). The results of the removal experiments highlight three mechanisms by which 

honey bee colonies respond to changing food availability. First, forager groups are 

more sensitive to changes in the relative nectar influx, rather than the absolute nectar 

influx. Second, forager groups and individual foragers responded to a decrease in 

nectar influx by increasing the number of recruitment events (probability of dancing), 

as opposed to the duration of these events (intensity of dances). Finally, foragers 

which were more responsive to environmental cues (food reward) were also more 
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sensitive to the social cues (interactions with receivers). Both the sucrose 

concentration (or perception of the food reward) and social cues (or perception of the 

same) might be represented by neuromodulator signalling which could affect the same 

reward system in honey bee foragers (Perry & Barron, 2012). Thus, these experiments 

can serve as a starting point to understand the mechanistic processes underlying the 

integration of social and environmental cues in the decision to perform a behaviour. 

Future Directions 

The experiments described in this chapter can be expanded further to understand how 

foragers respond to changing social interactions. The first step would be to mark 

individual receivers in the hive and combine removal experiments with observations 

of forager-receiver interactions. This would help in pinpointing the exact cue or signal 

that is involved in modulating the dance activity of the foragers. Further, observations 

of individually marked receivers would also reveal if inter-individual differences in 

interactions exist amongst receivers. These differences can be expected to play an 

important role in the regulation of foraging. Automated tracking techniques can be 

used to quantify various aspects of the interactions between foragers and receivers like 

antennation, trophallaxis etc.  

Another direction in which these experiments can be further expanded would be to 

more carefully observe the correlation between changing nectar influx and the change 

in dance activity of the remaining foragers. One possibility could be to sequentially 

remove foragers one after the other over the course of multiple days. The gradual 

change in nectar influx can correlate with the number of foragers which change their 

activity or with the extent of the change. Another possibility would be to have two 

active forager groups at two different feeders and then remove different proportions of 

foragers from either of these groups. This set up can also be used to observe the effect 

of feeder reward on the change in activity. Once forager groups are active at the two 

feeders (with different sucrose concentrations at each), the same proportion of 

foragers can be removed from both feeders to observe whether the change in activity 

of the remaining foragers would be different based on the feeder reward. 



 Chapter 3 – Removal | References 
 

109 
 

The results from chapter 2 and 3 also raise an interesting question pertaining to the 

composition of forager groups and its effect on individual dance activity. Forager 

groups in natural conditions would be transient, as food sources can bloom and 

deplete over the course of days. In such a situation, foragers can be expected to form 

part of multiple forager groups within their lifetime. Foragers might show a change in 

their dance activity from one group to the other due to the different group 

compositions at these food sources. This behavioural flexibility of individual foragers 

would have important implications for the formation and maintenance of forager 

groups in honey bee colonies. 
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Abstract 

Individual behavioural differences in responding to the same stimuli is a key facet of 

division of labour in eusocial insect colonies. Although these differences have been 

shown across behaviours in social insects, not much is known about the mechanisms 

underlying these differences. In this study we looked at the possible mechanisms 

underlying inter-individual variation in the waggle dance activity of honey bee 

foragers. We first quantified the variation in dance activity amongst groups of foragers 

visiting an artificial feeder filled consecutively with different sucrose concentrations. 

We then looked at the sucrose responsiveness and the brain gene expression levels of 

foraging gene Amfor, octopamine receptor gene AmoctR1 and insulin receptor 

AmInR-2 of these foragers. As expected, foragers showed large inter-individual 

differences in their dance activity, irrespective of the reward offered at the feeder. The 

sucrose responsiveness correlated positively with the intensity of the dance activity at 

the higher reward condition, with the more responsive foragers having a higher 

intensity of dancing. Out of the three genes tested, Amfor expression significantly 

correlated with dance activity, with more active dancers having lower expression 

levels. Our results thus provide the first hints of the processes underlying variation in 

dance activity in honey bee foragers and can be used as a starting point for further 

experiments. 

 

Keywords 

Foraging, Response thresholds, Waggle dance, Sucrose responsiveness, Octopamine, 

Recruitment behaviour, Insulin receptor, Navigation, Eusocial insects, Information 

communication 
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Introduction 

Individuals show variation in their response to the same stimulus in terms of either a 

change in their behaviour or a change in the intensity of the same behaviour [1]. This 

inter-individual variation is important as it forms the basis for adaptation to novel 

stimuli. Individual variation can persist across contexts and over time in a consistent 

manner, a phenomenon referred to as behavioural syndromes [2]–[4]. These syndromes 

are being extensively studied in vertebrates, while there is considerably less work on 

invertebrates [5]. 

Insects form the predominant terrestrial animal taxon on our planet in terms of both 

diversity and biomass [6], [7]. Traditionally, they had been viewed as simple “reflex 

machines” with very little inter-individual differences in behaviour [8]. But the 

phenomenon of individual behavioural differences amongst invertebrate species is 

slowly gaining acceptance as a valuable tool to study ecological and evolutionary 

consequences of behavioural decisions [9], [10]. This is particularly true in the case of 

social insects, wherein behavioural differences between workers of the same colony play 

a key role in division of labour within the colony [11], [12].  

In honey bees, foraging involves a large proportion of the work force of the colony [13], 

[14]. Some foragers scout the environment for new food sources and then recruit their 

nest mates to these food sources through dance communication [15]. This recruitment 

communication was initially identified as being either a round dance or a waggle dance, 

for food sources which were nearer and farther, respectively [16]. But more recent work 

showed that round and waggle dances do not represent two different recruitment 

signals [17]. Round and waggle dances incorporate both spatial information as well as 

information about the perceived profitability of the food source in case of nectar sources 

[18]–[20]. The profitability of a nectar source is defined by its energetic value and hence 

sugar concentration [21], [22], its distance from the hive [23], its distance to other nectar 

sources [21] and the nectar flow rate [24]. The profitability of a food source relative to 

other food sources in the environment drives recruitment to that food source [25] 

through its effect on the dance activity of individual foragers [15], [20]. In addition, 

previous work showed that individual foragers differed in both their foraging and dance 
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activity for the same food source [23], [26] and that the differences in dance activity 

were consistent across days [27]. Thus, the dance activity provides a robust 

experimental paradigm to explore the mechanistic underpinnings of inter-individual 

variation in behaviour. 

Inter-individual variation in sensory response thresholds determine which worker 

responds to a stimulus and the intensity of their response in social insect colonies [11]. 

In large colonies made up of thousands of workers, only those individuals for whom the 

intensity of the stimulus exceeds their thresholds respond to that stimulus [28]. This 

ensures that the colony does not expend unnecessary resources in responding to any 

change in stimuli. Empirical evidence for theoretical models of division of labour based 

on response thresholds point to the prevalence of this mechanism across social insects 

[29]–[33].  

In honey bees, response thresholds for gustatory stimuli have been studied extensively 

[34]–[39]. Responsiveness to sucrose, assayed through the proboscis extension reflex, 

correlates with division of labour at multiple scales in the colony. Nurses and foragers 

show differences in their sucrose responsiveness as do pollen and nectar foragers  [34]–

[36], [38], [40], [41]. Individual honey bees can also differ hugely in their evaluation of 

a sugar source [38], [42]. This individual sense of taste or evaluation of a sugar source 

can have drastic effects on their cognitive performance [37], [40], [43]. Bees with a 

higher responsiveness to sucrose, for example, learn to associate an odour or a tactile 

stimulus with a sugar reward faster [35], [44]. Both sucrose responsiveness and dance 

activity are tied to the reward value perceived by the individual [21], [45], hinting at a 

link between the two. 

In this study, we looked at mechanisms underlying individual variation in the round 

dance activity of honey bee foragers. We first tested the hypothesis that individual 

variation in sucrose responsiveness is correlated with individual variation in both 

foraging and dance activity. Bees with a higher sucrose responsiveness should place a 

higher subjective reward value on a feeder and hence dance more than bees with a lower 

responsiveness. We then tried to identify molecular correlates of individual variation in 

dance activity. Bees performing different tasks in the hive differ in the expression of 
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nutrition-relates genes such as the foraging gene Amfor [42] or the octopamine receptor 

gene AmoctR1 [46]. We tested the hypothesis that individual dance activity is 

correlated with the brain gene expression of either of these genes. Further, we studied 

the gene expression of the insulin receptor AmInR-2, as a possible mediator of nutrient-

sensing molecular pathways involved in foraging decisions [47], [48]. 

The Amfor gene codes for a cGMP-dependent protein kinase (PKG) in the honey bee. 

PKG has been linked to the lengths of foraging paths in both Drosophila melanogaster 

[49] and C. elegans [50], indicating a role in foraging-related locomotor behaviour. At 

the same time, bees differing in their gustatory responsiveness also differed in their 

Amfor brain gene expression [42] and in their PKG protein expression [51]. In Drosphila 

wild-type variants and in mutants differing in their PKG activity, a direct link between 

PKG and gustatory responsiveness was demonstrated [52], [53].  

Previous work showed a link between the neuromodulator octopamine and the dance 

activity of honey bee foragers [45]. Specifically, the topical application of octopamine 

increased the dance probability in honey bee foragers. The octopamine receptor 

AmOctR1 is one out of five octopamine receptors in honey bees. Like Amfor, this 

octopamine receptor is also connected to gustatory responsiveness. Foragers, which 

differed in their gustatory responsiveness from nurse bees, also differed in their 

AmoctR1 gene expression [46]. Increasing octopamine levels in the brain enhanced 

gustatory responsiveness [54] and improved individual learning performance [55]. 

Finally, insulin receptors are highly likely involved in the decision of whether to forage 

for pollen or nectar. High-pollen hoarding strains showed higher levels of insulin 

receptor expression than low pollen hoarding strains [48]. In addition, bees from the 

high pollen strains also had a higher gustatory responsiveness than bees from the low 

pollen strain [36]. Taken together, these findings make Amfor, AmoctR1 and AmInR-2 

interesting candidates for controlling or modulating individual dance performance in 

honey bees. 



 Chapter 4 – Thresholds | Materials and Methods 
 

122 
 

Materials and Methods  

Bees 

Apis mellifera carnica colonies used in all experiments were obtained from the 

University of Würzburg’s apiary. Colonies consisting of naturally mated queens and 

around 4,000 workers were set up in a two-frame observation hive connected to an 

outdoor flight cage (length: 9m, width: 5m, height: 3m). The colonies were provided 

with pollen and nectar at two different feeders within the flight cage. Nectar foragers 

were trained to an artificial feeder located around 5m away from the entrance of the 

hive. On each experimental day, 6-10 foragers were marked individually using paint 

marks. A wedge was used to direct the returning foragers to one side of the observation 

hive. This ensured that foragers only used this side as the dance floor [56]. Newly 

recruited, i.e. unmarked, foragers were caught, kept on ice and allowed back into the 

hive after the experiments on each day [15]. 

Behavioural analysis 

A total of 110 foragers from 3 colonies (28, 27 and 55 individuals, respectively) were 

observed from July 2015 to September 2015. On each experimental day, 3 hours of 

behavioural observations were done, between 09:00 hours and 13:00 hours. The 

foragers were provided with 1M sucrose for the first hour, 2M for the second hour and 

1M for the third hour (Fig. 4.1 a) at the feeder following established protocols for 

performing dance experiments [23]. Throughout the observation time, two observers 

were present, one at the feeder and one near the observation hive. The observer at the 

feeder would note down the trip made by the marker forager and capture recruits. The 

observer at the observation hive would video record the dance activity of the marked 

foragers. Video recordings were performed using a Sony Digital HD Video Camera 

Recorder HDR-CX405 (Sony Corporation, Japan) with 50 frames per second. 

We measured foraging intensity (the number of foraging trips made in an hour), number 

of dances, number of dance circuits, dance probability (the ratio of the number of dances 

to the number of foraging trips) and dance intensity (the ratio of the number of circuits 

to the number of dances) for each individual forager for each hour of the observation 

time-period. After the behavioural observations, we quantified the individual sucrose 



 Chapter 4 – Thresholds | Materials and Methods 
 

123 
 

responsiveness of each videotaped dancer. To do this, individuals were first immobilized 

on ice and mounted in a metal tube. After an hour, a series of water and six sucrose 

solutions were applied sequentially to both antennae of each bee, following established 

protocols [57]. Each individual forager was given a score of 1 or 0 for a solution 

depending on whether the solution elicited a proboscis extension response or not. The 

sum of the scores (maximum value of 7) is the gustatory response score (GRS) of the 

bee. After measuring sucrose responsiveness, bees were quickly transferred to liquid 

nitrogen and then stored individually at -80°C until their brains were dissected for 

mRNA expression analysis. 

Gene expression 

We first shortlisted individual foragers based on their dance activity and then looked at 

the messenger RNA expression of our genes of interest in their brains. The foragers were 

shortlisted based on their total circuits for the 2M feeder condition in such a manner 

that they had strong differences in their behavioural output. We used the total dance 

circuits as it is a very reliable indicator of the reward value perceived by foragers and 

used their activity in the 2M sucrose condition as foragers showed the greatest variation 

during this feeder condition [23].  

Individual bee brains were then homogenized in 750 mL of Isol-RNA lysis reagent 

(5PRIME, Hilden, Germany). This homogenate was mixed with 150 µl chloroform to 

achieve a phase separation in which RNAs tend to move into the aqueous phase. This 

aqueous phase was transferred to 1 volume Ethanol (70% v/v). Afterwards, the RNA in 

this solution was purified using the peqGOLD Total RNA Kit (Peqlab, Erlangen, 

Germany) following standard protocol including the optional DNase I digestion step 

(DNase I Digest Kit, Peqlab, Erlangen, Germany). The purified RNA (100 ng/reaction) 

was then used as a template to generate cDNA using the QuantiTect® Reverse 

Transcription Kit (Qiagen, Hilden, Germany). Each individual cDNA (Table 4.1) was 

analysed in triplicates in a quantitative Real-Time PCR using a Rotor-Gene Q (Qiagen, 

Hilden, Germany). A PCR reaction (25 µL) contained each primer (0.25 µM), TaqMan© 

probes (0.1 µM) and Rotor-Gene Multiplex PCR Master Mix (Qiagen, Hilden, Germany). 

Sequences of primers and TaqMan probes are given in Table 4.1. The following protocol 
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was followed for the PCR: 1 min at 60°C, 5 min at 95°C and 45 cycles consisting of 20 s 

at 95°C followed by 1 min at 60°C each. Afterwards, the gene of interest (GOI) and 

reference gene (REF, Amef1α, Reim et al. 2013) Ct values were determined. With these 

values we have calculated the GOI expression relative to REF expression with the ΔΔCt 

method [59]. These calculations were performed using the Rotor Gene Q software 

(Qiagen, Chatsworth, CA, USA). We performed the gene expression analysis on two 

replicates of foragers. 

Table 4.1 

Gene Oligo name Oligo sequence (5’-3’) 

EF1a 

 

AmEF1alpha_qF 1 

AmEF1alpha_qR 1 

 

Ef1a_o_S 2 

Ef1a_o_R 2 

 

AmEF1alpha_TM 

 gAACATTTCTgTgAAAgAgTTgAggC 

 TTTAAAggTgACACTCTTAATgACgC 

 

CgATTgTCACACCgCTCATATC 

TAAAggTgACACTCTTAATgACg 

 

 6FAM-ACCgAggAgAATCCgAAgAgCATCAA-

BBQ 

Amfor AmFOR_A_qF2 

AmFOR_A_qR1 

AmFOR_A_TM 

CTTgACACCgACgAAACCC 

CtgCTTTgATCAgTTCACgAgATC 

YAK -TTgTCAgCgTggCAAgCTCTTgA-BBQ 

AmoctαR1 

 

AmOa1_F 

AmOa1_R 

AmOa1_TM 

gCAggAggAACAgCTgCgAg  

gCCgCCTTCgTCTCCATTCg 

YAK-

TCCCCATCTTCATCACCCTTggCTTCTCC-

BBQ 

AmInR-2 InR-2 A 

InR-2 S 

InR-2 TM 

CgATCAgCAAAATTTgTACgAATC 

AAAgAAgAgggAgTgTgCCA 

YAK-TCggCATCCCTTCAgTCTTgAgAACT-

BBQ 

 1 together with Amfor, and AmoctαR1. 

2 together with Amilp2 and AmInR-2. 
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Table 4.1: Oligonucleotides used for quantitative real time PCR along with their sequence for the 

reference gene EF1a, foraging gene Amfor, octopamine receptor gene AmoctαR1 and insulin receptor 

gene AmInR-2 

 

Statistical Analysis 

We used mixed effects models to analyse the effect of the sucrose concentration on the 

five different behavioural parameters we measured: foraging intensity, number of 

dances, number of circuits, dance probability and dance intensity. We fit separate 

models for each behavioural parameter, with the parameter as the response variable, 

the 3 hours (corresponding to the first 1M, 2M and second 1M) as the predictor and the 

bee identity nested within colony as a random effect. We fit generalized linear mixed 

effects models (GLMMs) for foraging intensity, number of dances, number of circuits 

and dance probability and fit a linear mixed effects model (LMM) for dance intensity, 

based on the best fitting error distribution for each parameter. The error distributions 

for the GLMMs were Poisson for foraging intensity, Negative Binomial for number of 

dances and number of circuits and Binomial for dance probability. We then used 

generalized linear hypothesis test with conservative single step adjusted p values to 

compare each behavioural parameter between the 3 hours. We also checked for 

correlations between dance intensity and foraging intensity during either of the 3 hours, 

using Spearman’s correlation coefficient. 

We used mixed effects models to analyse whether the GRS of an individual could predict 

its foraging intensity, number of dances, number of circuits, dance probability or dance 

intensity. The behavioural parameter was the response variable, the GRS was the 

predictor and the colony was a random effect in the models. Separate models were built 

for each of the 3 hours for each of the behavioural parameters. We fit GLMMs for 

foraging intensity, number of dances, number of circuits and dance probability and fit 

an LMM for dance intensity, based on the best fitting error distribution for each 

parameter. The error distributions for the GLMMs were Poisson for foraging intensity, 

Negative Binomial for number of dances and number of circuits and Binomial for dance 

probability. Our model for the number of circuits at the second 1M feeder condition 
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showed a high degree of overdispersion. To account for this, we fit the model with an 

extra random intercept with one level per observation [60].  

We used LMMs to compare to analyse whether the relative mRNA expression of any of 

the 3 different genes of interest could predict the total dance circuits of the individual 

foragers in the 2M feeder condition. We first used an LMM with the dance circuits as 

the response, the GRS as the predictor and the replicates as a random effect to verify 

that there was no correlation between the dance circuits and the sucrose responsiveness 

of the selected individuals. We then built separate models for each of the genes of 

interest with the dance circuits as the response variable, the relative mRNA expression 

as the predictor and the replicates as a random effect.  

All of the statistical analyses were performed in R 3.5.1 using the RStudio IDE [61], [62]. 

We first fit different distributions to each behavioural parameter using the fitdistrplus 

package [63]. We then used lme4 to fit GLMMs [64] and nlme to fit LMMs [65] based 

on the appropriate error structure. We used the lattice [66] and DHARMa [67] packages 

to check model assumptions and the ggplot2 [68], ggpubr [69], cowplot [70] and grid 

(from base R) packages to produce plots. Spearman’s correlation tests and t-tests were 

done using the stats package in base R. 

Results 

Foraging intensity varies with sugar concentration of the feeder and amongst 
individuals 

Foraging intensity strongly depended on the sucrose concentration of the feeder. The 

number of foraging trips was significantly greater for both the first 1M and the second 

1M sucrose solution than for the 2M sucrose solution (Table 4.2, Fig. 4.1 b, p < 0.001 for 

both). The foraging intensity was the same for both 1M condition. Foraging intensity 

also varied amongst individuals, with some individuals only performing a few foraging 

trips and others performing a greater number of foraging trips (range - first 1M: 7 to 28 

trips per hour, 2M: 0 to 19, second 1M: 0 to 24). 
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Table 4.2 

Behavioural 

Parameter 

Comparison of 

Concentrations 

Difference 

Estimate 

Confidence 

Interval 
p Value 

Foraging 

Intensity 

Second 1M vs 

First 1M 
-0.072 -0.149 – 0.006 0.078 

2M vs First 1M -0.357 -0.441 - -0.273 <0.001 

2M vs Second 1M -0.285 -0.370 - -0.200 <0.001 

Number of 

Dances 

Second 1M vs 

First 1M 
0.007 -0.093 – 0.107 0.986 

2M vs First 1M -0.055 -0.156 – 0.047 0.413 

2M vs Second 

1M 
-0.062 -0.163 – 0.039 0.325 

Number of 

Waggle Runs 

Second 1M vs 

First 1M 
0.084 -0.192 – 0.359 0.758 

2M vs First 1M 0.437 0.161 – 0 .712 < 0.001 

2M vs Second 1M 0.353 0.078 – 0.629 0.008 

Dance 

Probability 

Second 1M vs 

First 1M 
0.214 0.038 – 0.389 0.012 

2M vs First 1M 1.172 0.959 – 1.384 <0.001 

2M vs Second 1M 0.958 0.741 – 1.174 <0.001 

Dance Intensity 

Second 1M vs 

First 1M 
0.039 -1.893 – 1.970 0.999 

2M vs First 1M 10.884 8.952 – 12.815 <0.001 

2M vs Second 1M 10.845 8.914 – 12.776 <0.001 

 

Table 4.2: Estimated differences, confidence intervals and single step adjusted p values from mixed 
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effects models looking at the effect of different concentrations on the 5 different behavioural 

parameters. The difference estimates are provided in the link scale of the respective GLMM and hence 

are not in the scale of the behavioural parameter (except in the case of dance intensity, for which an 

LMM was fitted). The comparisons which showed a significant difference are highlighted in italics. 

 

Figure 4.1 

 

Figure 4.1 a:  Schematic of experimental protocol. Honeybees in an observation hive were trained to a 

feeder in an outdoor flight cage. On each experimental day at the same time, bees were offered a 1M 

sucrose feeder for one hour. This was followed by a 2M sucrose feeder in the next hour. In the third hour, 

bees were again offered a 1M sucrose feeder. Bees were marked individually at the feeder. Their dance 

behaviour was subsequently videotaped in the hive. At the end of the observation, we quantified sucrose 

responsiveness of each dancer which had been videotaped. b-f: Dotplots representing the foraging 

intensity, the number of dances, the total number of circuits, the dance probability and the dance 

intensity, respectively of all 110 individuals for each of the 3 hours of experimental time. The mean and 

the standard deviation for each group is indicated by the red circle and vertical line respectively. 

Significant differences (p < 0.05) between groups are indicated by different letters above the boxplots. 

Foraging intensity was lower and the number of circuits, dance probability and dance intensity were 

higher in the 2M as compared to both 1M. In addition, the dance probability was higher during the second 

1M as compared to the first. The number of dances did not differ during either of the 3 hours. 

 

Dance activity varies with sugar concentration of the feeder and amongst 
individuals 

Interestingly, the difference in foraging intensity did not translate to a difference in the 

number of dances. The number of dances performed for each concentration did not 
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significantly differ from each other (Table 4.2, Fig. 4.1 c, p > 0.05). At the same time, 

individual bees strongly deviated from each other in their dance number. Some bees did 

not dance at all, whereas others performed up to 21 dances in the same time interval 

(range - first 1M: 0 to 21 dances per hour, 2M: 0 to 18, second 1M: 0 to 21). 

We also found that the number of circuits showed an inverse relationship as compared 

to the foraging intensity. The total number of circuits was higher for 2M in comparison 

with both 1M situation (Table 4.2, Fig. 4.1 d, p < 0.01). The number of circuits was not 

significantly different between either of the 1M condition. Individuals strongly differed 

in the number of circuits they performed within an hour, with some individuals not 

performing any dances at all and some performing more than 400 circuits (range - first 

1M: 0 to 520 circuits per hour, 2M: 0 to 617, second 1M: 0 to 510).  

Similarly, we found that both the dance probability and the dance intensity were 

significantly higher for 2M as compared to both 1M condition (Table 4.2, Fig. 4.1 e and 

f, p < 0.001). In addition, the dance intensity was similar (p > 0.05) during the two hours 

with 1M sucrose solution at the feeder, but the dance probability differed, with a higher 

probability for the second 1M as compared to the first 1M sucrose solution (p = 0.012).  

Individual foragers also differed strongly in their dance probability, with some 

individuals not performing any dance at all and some performing dances during all their 

foraging trips during the first 1M, 2M and the second 1M sucrose feeder. This inter-

individual variation was also seen in the dance intensity, with some individuals 

performing fewer than 10 runs per dance and some individuals performing more than 

25 runs in both 1M condition. This variation was stronger in the 2M condition, with 

some individuals performing more than 40 runs per dance and others performing fewer 

than 20 runs per dance.  

Trade-off between dance activity and foraging activity 

We hypothesized that individual foragers would show a trade-off between their foraging 

activity and dance intensity. In line with our hypothesis, we found that dance intensity 

correlated negatively with the foraging intensity during the first 1M sucrose solution 

(Fig. 4.2 a; Spearman’s correlation coefficient = -0.28, P = 0.002). However, we did not 

find a correlation when the feeder offered 2M sucrose solution (Fig. 4.2 b; Spearman’s 
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correlation coefficient = -0.14, P = 0.14), or during the second 1M (Fig. 4.2 c; Spearman’s 

correlation coefficient = 0.11, P = 0.24).  

Figure 4.2 

 

a-c: Correlations between the dance intensity and the foraging intensity of all 110 individual foragers for 

each of the 3 hours, respectively. Spearman’s correlation coefficient (R) and the p value representing the 

significance of the correlation are provided within each plot. A linear regression along with the 95% 

confidence interval around it is provided as a black line and grey shaded region in each plot. Dance 

intensity was negatively correlated with foraging intensity for the first 1M sucrose feeder. 

 

Individual sucrose responsiveness can explain variation in individual dance 
activity 

We hypothesized that individual differences in the dance activity of foragers would be 

positively correlated with individual sucrose responsiveness. We first tested whether 

gustatory response scores (GRS), which are a measure for sucrose responsiveness [57], 

correlated with foraging intensity. We found that there was no correlation between 

foraging intensity and the GRS in either of the three feeder conditions (first 1M: effect 

size = -0.013, CI = -0.035 – 0.008, p = 0.225; 2M: effect size = -0.0096, CI = -0.035 – 

0.016, p = 0.463; second 1M: effect size = 0.008, CI = -0.014 – 0.029, p = 0.485). Similarly, 

we found no correlation between the GRS and number of dances (first 1M: effect size = 

-0.014, CI = -0.054 – 0.025, p = 0.463; 2M: effect size = 0.0012, CI = -0.035 – 0.037, p = 

0.947; second 1M: effect size = 0.003, CI = -0.057 – 0.064, p = 0.916) and GRS and 

number of circuits (first 1M: effect size = 0.0102, CI = -0.056 – 0.078, p = 0.763; 2M: 

effect size = 0.036, CI = -0.024 – 0.096, p = 0.245; second 1M: effect size = 0.104, CI = -

0.047 – 0.255, p = 0.175). 
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We also found no correlation between the GRS and the dance probability at either the 

first 1M (odds ratio: 2.722, CI = 2.607 – 2.848, p = 0.952) or the second 1M condition 

(odds ratio: 2.686, CI = 2.568 – 2.816, p = 0.614). We found an observable but non-

significant trend in dance probability at the 2M sucrose feeder (odds ratio: 2.886, CI = 

2.697 – 3.108, p = 0.087), indicating that an increase in GRS by 1 increases the odds of 

dancing by a factor of around 3. 

Finally, we found that the GRS of foragers correlated positively with the intensity of 

dancing of foragers at the 2M feeder (Fig. 4.3 b; slope: 1.054, CI = 0.086 – 2.022, p = 

0.033). But the GRS did not correlate with the dance intensity at either the first 1M 

feeder (Fig. 4.3 a; slope: 0.515, CI = -0.127 – 1.158, p = 0.115) or the second 1M feeder (Fig. 

4.3 c; slope: 0.636, CI = -0.068 – 1.341, p = 0.076).  

Figure 4.3 

 

a-c: Correlations between GRS and Dance Intensities of foragers for each of the 3 hours, respectively. The 

data for all 110 foragers are provided with the shape representing the colony they belonged to (Colony 1: 

circles, Colony 2: triangles, Colony 3: squares). The straight line represents the linear correlation obtained 

between GRS and dance intensity from linear mixed effects models, with the grey area representing the 

95 % confidence interval around this correlation. The slope and the significance of the correlation is 

provided for each of the three comparisons. GRS correlated with the dance intensity only during foraging 

at the 2M sucrose-concentration feeder. 

 

Gene expression correlates with differences in individual dance activity 

We quantified mRNA expression of candidate genes in the brains of selected individual 

foragers to look for neuronal candidates underlying differences in dance activity. There 

was no correlation between the GRS and the total dance circuits in the 2M feeder 

condition of the selected individuals (slope: -7.183, CI = -44.405 – 30.039, p = 0.705). 
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We then checked for correlations between the dance circuits in the 2M feeder condition 

and the mRNA expression of the following genes: the foraging gene Amfor, the 

octopamine receptor gene AmoctR1 and the insulin receptor gene AmInR-2. 

We found a strong negative correlation between the dance activity and the mRNA 

expression of Amfor. Individual foragers with lower expression levels had performed 

higher dance circuits in the 2M feeder condition (Fig. 4.4 a; slope: -418.027, CI = -

694.209 – -141.844, p = 0.006). We did not find any correlation between the dance 

circuits and expression levels of AmoctR1 (Fig. 4.4 b; slope: -372.268, CI = -743.824 – 

0.713, p = 0.059) or AmInR-2 (Fig. 4.4 c; slope: -68.679, CI = -290.323 – 152.966, p = 

0.544). 

Figure 4.4 

 

a-c: Correlations between the dance circuits in the 2M feeder condition and messenger RNA expression 

of Amfor, AmOctR1 and AmInR-2, respectively. The straight line represents the linear correlation 

obtained between the mRNA expression levels and dance circuits from linear mixed effects models, with 

the grey area representing the 95 % confidence interval around this correlation. The slope and the 

significance of the correlation is provided for each of the three comparisons. Circles represent the selected 

individuals in the first replicate and triangles represent the selected individuals in the second replicate. 

Only the mRNA expression levels of Amfor showed a significant negative with the dance circuits, with 

more active dancers having lower levels of Amfor. 

 

Discussion 

We found that honey bee foragers show large inter-individual variation in both foraging 

and dance activity. Our results are similar to findings from earlier studies on the 

foraging and dance activities of honey bee workers [23], [26], [71], and are in line with 

studies from other social groups [72]–[76]. In addition, recent work has shown a high 
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degree of consistency in inter-individual activity variation among social insects [77], 

[78]. For example, such consistency in activity has been observed in the dance activity 

of honey bee foragers [27]. Consistent inter-individual differences across behavioural 

contexts have been linked to animal ‘personalities’ in vertebrates [3]. The role that such 

consistent inter-individual differences play in a eusocial insect colony’s functioning 

remains largely unexplored. Individual differences are hypothesized to play a key role 

in maintaining division of labour and hence ensure the efficient functioning of large 

colonies [79]. 

Our behavioural observations also revealed a trade-off between foraging and 

recruitment activity. Our results can be understood in the context of the colony’s need 

to ensure that each foraging group is efficiently exploiting a food source. A balance has 

to be struck between foraging and recruitment activity of the group, till an optimal 

number of foragers are active at the food site. This balance between these two parallel 

activities might be achieved by coupling individual variation in foraging and dance 

intensity negatively, as seen in our experiments. Individuals might invest more in 

foraging or dancing and at the same time contribute to the efficient exploitation of the 

food source. Our results indicate that such a trade-off does exist but might be easier to 

observe only under a situation when individuals have to invest maximally into either 

foraging or recruitment. We found a negative correlation between foraging and dance 

intensity at the first 1M feeder condition, but at 2M or the second 1M feeder condition. 

In the initial stages of foraging at a nearby food source, individuals do trade off foraging 

and dancing. However, since the food source is nearby, and individuals do not have to 

invest a lot of time in flying to the food source, this trade-off is not apparent in our 

experimental set-up after the first hour. We believe that a similar situation to our first 

1M condition would arise if foraging was more energetically intensive, for example if 

foragers had to fly longer distances or forage at food sources with longer handling time. 

Nevertheless, our results are similar to an earlier study on ants which reported a trade-

off between attacking a prey or calling for help from nest mates [80]. Thus, trade-offs 

between foraging and recruitment at the individual level might be a hallmark of eusocial 

foraging groups which rely on social communication to exploit food sources. 
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Response thresholds have been hypothesized to play a key role in driving individual 

variation in behaviour in eusocial colonies. Individual differences in response 

thresholds could underly individual variation in both the intensity and the probability 

of responding to a stimulus [81]. This in turn would help the colony invest an 

appropriate number of workers while responding to any change in stimulus and hence 

ensures the efficient functioning of the colony. Thus, the presence of such response 

thresholds across eusocial insect species points to prevalence of such thresholds in 

determining who does what work in such colonies. For example, such thresholds have 

been observed in thermoregulation in bumblebees [33], undertaking in honey bees [29] 

and foraging in ants [82].  

Our results hint at a possible link between sucrose responsiveness and the intensity of 

dance activity. Individual sucrose responsiveness correlated positively with dance 

intensity when bees were foraging at a 2M sucrose feeder. This indicates that when 

foraging at a feeder offering a high sugar concentration (i.e. 2M sucrose), individuals 

with a high responsiveness perceived a relatively higher "reward" value than bees with 

a lower responsiveness. Interestingly, we did not find a correlation between sucrose 

responsiveness and dance intensity at the 1M feeder condition. The lesser inter-

individual variation in dance intensity at 1M as compared to 2M (see Fig. 4. 1 f) might 

be an explanation for why we don’t see a correlation between dance intensity and 

sucrose responsiveness at the lower concentration. We can also not rule out the role 

other factors, particularly social cues activity [19], [27], [83], [84], play in determining 

individual variation in dance activity. The relative strength of all these factors in 

modulating inter-individual variation might be reward-dependent and hence would 

differ based on the sucrose concentration. 

Finally, we also investigated mRNA expression of three selected genes involved in 

locomotor behaviour, nutrition-related behaviours and sucrose responsiveness to 

explore possible molecular mechanisms underlying individual variation in dance 

activity. Among these genes, the mRNA expression of the foraging gene Amfor showed 

a significant negative correlation with dance activity. Individuals with higher mRNA 

expression had performed fewer dance circuits. At the same time, the sucrose 

responsiveness of the selected individuals did not correlate with the dance circuits. 
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Hence, the variation in gene expression is likely to be related to variation in locomotor 

behaviour rather than to variation in the evaluation of the food source. The foraging 

gene encodes one of two cGMP-dependent protein kinases in the honey bee. In 

Drosophila melanogaster, expression of the foraging gene was related to locomotor 

behaviour of larvae during food search. Larvae with higher PKG protein levels displayed 

longer food-search paths than those with lower PKG levels  (referred to as “rovers” and 

“sitters” respectively) [49]. More importantly, adult sitters showed a higher turning rate 

than rovers in the sugar-elicited search behaviour [85]. Thus, it appears that turning 

frequency in flies and honey bees is correlated with low expression levels of the foraging 

gene. Interestingly, Dethier (1957) demonstrated that sugar-elicited search behaviour in 

flies and honey bee dance communication show many similarities. He proposed that 

behavioural modules of the search behaviour might have been incorporated into the 

honey bee dance behaviour [86]. Our experiments clearly showed a correlation between 

foraging gene expression and dance activity, suggesting that this gene not only plays a 

role in spatial exploration but also in the communication of navigational information. 

In addition, they might also provide support for Dethier’s ideas on how one form of 

social communication might have evolved from solitary behaviour by using an already 

existing behavioural genetic toolkit [87], [88]. Future studies of this phenomenon using 

targeted knockdown through RNA interference [89] and knockout by CRISPR/Cas 9 

[90] hold the promise of providing a deeper understanding of the neuronal and 

molecular mechanisms underlying PKG and recruitment behaviour in honey bees. 

Data accessibility 

The raw data obtained from these observations will be uploaded and made available at 

a Mendeley Data repository. 
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Chapter 5 – Simulations 

Introduction 

Social communication plays an important role in the structure and dynamics of animal 

groups (Conradt & Roper, 2003; Pruitt & Goodnight, 2014). Inter-individual variation 

in producing and responding to social signals can help buffer groups against 

perturbations (Chate et al., 2015; Giardina et al., 2010; Sinhuber, van der Vaart, & 

Ouellette, 2019). Consistent inter-individual variation in behavioural responses, 

including communication, is present across the animal kingdom (Bell, Hankison, & 

Laskowski, 2009). However, experimentally pinpointing the adaptive value of 

individual variation in a variety of social systems is difficult (Jeanson & Weidenmüller, 

2013; Wolf & Weissing, 2012). Theoretical models and simulations can provide 

valuable insights into how such systems work in the absence of empirical work 

(Bouwhuis et al., 2018). 

Agent-based models (ABMs) are a useful toolkit to understand the role that consistent 

individual variation (“behavioural syndromes” or “personalities”) plays in group 

dynamics. These models simulate independent agents interacting with each other and 

the environment in a spatially defined manner (Railsback & Grimm, 2011). Since 

agents can be simulated with any degree of complexity, these models have seen 

widespread usage in fields ranging from social learning and the dynamics of opinion 

formation to animal welfare and risk management (Janssen, Sharpanskykh, & Curran, 

2019; Jędrzejewski, Marcjasz, Nail, & Sznajd-Weron, 2018; McLane, Semeniuk, 

McDermid, & Marceau, 2011; Van Der Post, Franz, & Laland, 2016). In animal 

behaviour, theoretical models have been built to study the underlying mechanisms 

behind empirical observations on foraging, group hierarchies, the spread of diseases 

and animal rhythms amongst others (Hunter, Namee, & Kelleher, 2018; Pitt, Box, & 

Knowlton, 2003; Ravignani & de Reus, 2019). In silico experiments using ABMs have 

thus helped understand complex phenomenon in different systems. 

Eusocial insect colonies are characterised by large number of workers performing 

different tasks at the same time (Hölldobler & Wilson, 2009). Individual workers do 

not have complete information about the colony state and must rely on social 
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interactions to make decisions regarding the task to perform (Grüter & Keller, 2016; 

Waters & Fewell, 2012). In such systems, ABMs have been useful in understanding 

how efficient division of labour can arise from the interactions between agents with 

limited information and simple behavioural rules (Matthias A. Becher et al., 2014; 

Anna Dornhaus, Klügl, Puppe, & Tautz, 1998; Johnson & Nieh, 2010; Schmickl & 

Crailsheim, 2008). ABMs have been used to gain a better understanding of processes 

like nest site selection and collective foraging (M. A. Becher et al., 2016; List, Elsholtz, 

& Seeley, 2009; Pratt, Sumpter, Mallon, & Franks, 2005; Van Nest & Moore, 2012) and 

translate this knowledge into optimisation algorithms employed in economics, 

engineering and management (Fathian & Amiri, 2007; Maia, De Castro, & Caminhas, 

2012; Teodorović, 2009; Zengin, Sarjoughian, & Ekiz, 2013). Recent advances in the 

field in terms of standardisation of methods (Grimm et al., 2006) and the availability 

of multiple programming environments (Carneiro, Andrade, Câmara, Monteiro, & 

Pereira, 2013; Grignard et al., 2013; Tisue & Wilensky, 2004) have made ABMs even 

more accessible. 

The waggle dance behaviour of honey bee foragers is one of the most complex form of 

insect communication and is an integral part of the collective foraging activity of 

honey bee colonies (Seeley, 1995; von Frisch, 1967). Foragers returning from a 

rewarding food source use it to communicate the spatial location of the source to nest 

mates. In addition, foragers integrates social cues from nest mates which contain 

information about the colony food stores, nectar influx and food source conditions 

(Farina, 2000; Nieh, 2010; Seeley, 1989; Thom, 2003). Empirical studies on the 

adaptive value of the waggle dance are difficult due to the need to non-invasively test 

colonies which are unable to utilise the waggle dance under different environmental 

conditions (A. Dornhaus & Chittka, 2004; Kirchner & Grasser, 1998). As a result, the 

adaptive benefits of spatial information transfer through the waggle dance has 

remained inconclusive so far (Donaldson-Matasci & Dornhaus, 2012; A. Dornhaus & 

Chittka, 2004; Grüter, Balbuena, & Farina, 2008). 

Modelling the process of honey bee foraging under different conditions has provided 

insights about the advantages of the waggle dance as a recruitment mechanism. 

Dornhaus et al. (2006) and Beekman and Lew (2007) showed using simulations that 
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the waggle dance is advantageous only when food patches are poor and heterogenous. 

In their simulations the recruitment process was not advantageous for the colony’s 

foraging success under high resource density. More recently, simulations have shown 

that relying on private information and not relying on shared information (the waggle 

dance) leads to a greater diversity of food source exploitation, especially when the 

nectar availability per flower is low (Bailis, Nagpal, & Werfel, 2010). Schürch & Grüter 

(2014) showed that the foraging success of simulated colonies is sensitive to the 

duration for which the model is run. When models were run for longer time periods, 

spatial information transfer led to increased foraging success at the colony level under 

most environmental conditions. 

ABMs on the honey bee waggle dance behaviour have so far not incorporated 

consistent individual variation in foraging and dance activity amongst the simulated 

agents. There is growing evidence that individual foragers differ in their foraging and 

dance activity (Seeley, 1994; Tenczar, Lutz, Rao, Goldenfeld, & Robinson, 2014) and 

that these differences are consistent over days (Buatois & Lihoreau, 2016; George & 

Brockmann, 2019; Walton & Toth, 2016). In this study, we introduce an ABM 

incorporating individual variation in the probability and intensity of dance activity. 

We compare the consistency of the total recruitment activity of agents in the 

simulation with empirical data, to understand the role of individual variation in 

probability and intensity in maintaining this consistency. 

Material and Methods 

We simulated an agent-based model (ABM) of honey bee nectar foragers that have 

individual variations in their dance probability and dance intensity for any given food 

reward. Our model is based on an earlier one (Schürch & Grüter, 2014), which we have 

modified to incorporate individual level parameters. We used NETLOGO 5.3.1 to 

implement the model, and follow the “Overview, Design Concepts and Details” 

protocol to describe it (Grimm et al., 2006). 

Purpose  

The purpose of this model was to understand the effect of two variables, the 

probability that an individual will dance for a given food reward and the intensity of 
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the dances for a given food reward, in maintaining consistent inter-individual 

differences in the recruitment behaviour of honey bee foragers. Both probability of 

dancing and intensity of dances, which is the number of waggle runs per waggle 

dance, is correlated with the foragers perception of the food reward (Barron, Maleszka, 

Vander Meer, & Robinson, 2007; George & Brockmann, 2019; Seeley, 1989, 1994). In 

our model, we implemented two individual state parameters that corresponded to our 

variables of interest; a probability modulator and an intensity modulator. The 

probability modulator is the internal threshold that regulates the probability that a 

honey bee performs a waggle dance on returning to the hive after foraging. The 

intensity modulator regulates the number of waggle runs that a bee makes in each 

waggle dance for a given nectar source reward.  

State variables and scales 

In all our model runs we simulated 300 foragers from one colony. The foragers were 

divided into two different types, scouts (n = 30) and recruits (n = 270), based on 

typical proportions of scouts and recruits in an A. mellifera colony (Seeley, 1995). 

Although we were interested in the consistency of recruitment activity of the recruits 

themselves, we needed to incorporate scouts into the model to ensure that the food 

sources were discovered by the colony. The states that individual agents could take in 

our model was the same as in the previously published model. Scouts readily abandon 

food sources they have found in order to explore and find new ones (Liang et al., 2012; 

Seeley, 1983). They could, at any time step, be in any of the 6 states: idle in the colony, 

scouting for food sources, feeding at a food source, returning to the colony, recruiting 

of idle foragers to the newly discovered food source, returning to the nest without 

having discovered food. Scouts could only change from some states to another (Fig. 5.1 

a). Recruits, on the other hand, have a very low probability of independently flying out 

to find a food patch, and usually follow a waggle dance before they leave the nest for 

foraging (Biesmeijer & De Vries, 2001; Seeley, 1983). Recruits could be in any of the 

following 8 states (Fig. 5.1 b) at any time step: idle in the nest, waiting to be recruited, 

flying to food source, feeding on food source, returning to colony after feeding, 

recruiting new idle foragers, scouting for forage, returning to the colony without 
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having discovered food. All agents were characterized by an identity number, a dance 

probability modulator and a dance intensity modulator (Table 5.1).  

Our agents were located on a two-dimensional square grid with 201×201 patches with 

a patch width of 100m. Thus, our agents could explore an area corresponding to a 

20km x 20km square centred on the hive, similar to the previous model. Our agents 

could occupy any position in this area and were not restricted to the edges of the 

patch. The agents' hive was located at the central patch. We simulated a foraging 

environment for our agents with no temporal change in the distribution of nectar 

sources. This was done to ensure that we could easily compare our simulation results 

with previous experimental data that we had obtained (George & Brockmann, 2019). 

Our agents had access to four equally rewarding (0.8 M sucrose concentration) nectar 

sources at a distance of 80 patches from the nest. The four patches were distributed 

around the nest with a 90° angle between consecutive patches. These patches never 

got exhausted, similar to artificial feeders provided in flight cage experiments. 

Simulations were run in discrete time-steps. We modelled time as it was done in the 

previous model, where one time-step corresponded to 10 seconds in real time. The 

agents were allowed to forage between 6:23 and 17:37. This was done by letting them 

forage when this condition was true:  . Weather was not 

simulated, and so the general foraging activity of the colony remained similar 

throughout the day. 

Process overview and scheduling  

Each simulation was run for five days, consisting of a two-day non-experimental and a 

three-day experimental phase. The non-experimental phase allowed foragers to learn 

about the location of food sources around their colony. Scouts and recruits followed 

similar processes while foraging (Fig. 5.1 a and b). The recruitment process in our 

model was based on the earlier model. After unloading the nectar, individual agents 

could dance to recruit one other agent to the food source. Each dance had a 25% 

chance to recruit a forager, in accordance with empirical data (A. Dornhaus et al., 

2006; Gould, Henerey, & MacLeod, 1970; Seeley & Towne, 1992; Seeley & Visscher, 

1988; Tautz, 1996). 



 Chapter 5 – Simulations | Material and Methods 
 

148 
 

Figure 5.1 

 

Figure 5.1: The process overview of (a) scouts and (b) recruits with the states that they can occupy at 

one time point in the model.  
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Table 5.1 

Variable Value 

Number of scouts 30 

Number of recruits 270 

Mean ± SD individual probability modulator 

of bees* 

0.255 ± 0.1   

Mean ± SD individual dance intensity 

modulator of bees* 

0.255 ± 0.1 

Time steps per day 8640 

Probability that a scout will leave the nest  0.815 

Probability that an idle recruit will scout 0.00009 

Mean ± SD handling time on patch 180±60 

Nectar handling time in nest 6 

Distance of feeders from nest+ 80 patches 

Nectar quality at feeders+ 0.8 M 

Agent Speed 0.7 patch width / time step 

Levi flight parameter 2.4 

Number of recruits following the dance of a 

bee 

1 

Probability of dance success 0.25 

 

Table 5.1: The state variables used in the agent-based model. Variables marked with a (*) are individual 

specific variables unique to our model. Variables marked with a (+) have been modified from the 

original model. The other parameters in our model are similar to the model in Schürch and Grüter, 

2012. 

The probability that a bee will dance on returning to the hive is determined by her 

probability modulator, the nectar quality in terms of sugar concentration (Tautz & 

Sandeman, 2003; Waddington, 1982), the distance of the nectar source from the hive 

(Seeley, 1994) and the current influx of returning foragers (Seeley, 1989). The quality 

of the food sources and their distances from the hive were kept the same throughout, 

and the current influx of returning foragers would be the same for bees dancing at the 

same time step. Thus, in our model, individual differences in dance probability were a 

direct result of individual differences in the probability modulator. If a bee decides to 
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dance, the intensity of her dance is determined by nectar source distance, nectar 

quality (Seeley, 1994) and her dance modulator. Since nectar source distance and 

quality were kept constant, differences in dance intensity were due to individual 

differences in the intensity modulator between agents. 

Scouts and recruits became idle after dancing. Agents in an idle state could leave the 

nest with probability pexit. Scouts constantly searched for new food sources, while 

recruits showed high patch fidelity (Al Toufailia, Grüter, & Ratnieks, 2013; Moore & 

Doherty, 2009). Each day recruits, that had previously foraged, decided to either 

continue foraging or abandon the patch. The probability to abandon the patch 

depended on the individual probability modulator, nectar quality and nectar source 

distance.  

We tested four different experimental variations of our model. We ran 1200 

simulations for each of our experimental variation. The experiments are described 

below: 

Experiment 1: All agents had the same probability and intensity modulator. Honey bee 

foragers were all similar with no individual-specific state variable linked to differences 

amongst them. 

Experiment 2: Every agent was characterised by an individual probability modulator. 

However, there was no variation in intensity modulator amongst the agents. Honey 

bee foragers showed inter-individual differences in their probability of dancing for any 

given food reward. The probability modulator for each agent was obtained from a 

normal distribution [mean ± standard deviation (sd) = 0.255 ± 0.1]. An agent with the 

mean value of this distribution as its probability modulator was similar to all agents in 

experiment 1 (Fig. 5.2 a). 

Experiment 3: Every agent was characterised by an individual intensity modulator. 

However, there was no variation in probability modulator amongst the agents. Honey 

bee foragers showed inter-individual differences in their intensity of dances for any 

given food reward. The intensity modulator for each agent was obtained from a 

normal distribution (mean ± sd = 0.255 ± 0.1). An agent with the mean value of this 
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distribution as its intensity modulator was similar to all agents in experiment 1 (Fig. 

5.3 a). 

Experiment 4: Each agent was characterized by an individual probability and intensity 

modulator, both of which were obtained from normal distributions (mean ± sd = 0.255 

± 0.1). An agent with the mean values of probability and intensity modulator was 

similar to an agent in experiment 1. In this experimental variation, honey bee foragers 

showed inter-individual differences in both the probability of dancing and intensity of 

dances for any given food reward. 

Figure 5.2 

 

Figure 5.2: (a) The individual variation in the dance probability curves for 300 agents in one of the runs 

of experiment 2 and experiment 4. Each green curve corresponds to the relationship between 

probability of dancing and food quality for one of the agents, obtained from its probability modulator. 

The brown line corresponds to the relationship between probability of dancing and food quality for all 

agents in Model 1. (b) Individual variation in dance probability used in the sensitivity analysis. Each 

subplot corresponds to one particular coefficient of variation (CV) in the probability modulator. Green 
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lines within each subplot represents the relationship between the probability of dancing and food 

quality for all 300 agents at this coefficient of variation. 

 

Design Concepts 

In our model, honey bee foragers collected food from four food sources that were 

present throughout their foraging time period and brought it back to the hive for 

storage. 

Environmental Stimuli: The honey bee foragers could evaluate the quality of the food 

sources. The probability and intensity of dancing depended on this quality. 

Biotic stimuli: Scouts and recruits could pass on the information about nectar source 

location to other recruits. Recruits mostly flew out only after receiving this 

information. 

Figure 5.3 
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Figure 5.3: (a) The individual variation in the dance intensity curves for 300 agents in one of the runs of 

experiment 3 and experiment 4. Each blue curve corresponds to the relationship between intensity of 

dances and food quality for one of the agents, obtained from its intensity modulator. The brown line in 

the center corresponds to the relationship between intensity of dances and food quality for all agents in 

Model 1. (b) Individual variation in dance intensity used in the sensitivity analysis. Each subplot 

corresponds to one particular coefficient of variation (CV) in the intensity modulator. Blue lines within 

each subplot represents the relationship between the intensity of dances and food quality for all 300 

agents at this coefficient of variation. The curves in (a) represent the variation in the intensity of dances 

at a coefficient of variation of 0.3705 of the intensity modulator. 

 

Stochasticity: The probability and intensity modulators were assigned stochastically. 

They were picked randomly from a normal distribution and assigned to the 

individuals. Agent decisions with respect to leaving the hive, dancing for a food 

source, learning the location of a nectar source and abandoning a nectar source were 

all probabilistically determined. 

Observation: At the end of each day, the number of foraging trips, the patch visited, 

number of dances and number of dance circuits in each dance made by every 

individual recruit bee were recorded. We then obtained the total number of dance 

circuits made by each forager for each day. We shortlisted foragers which consistently 

visited the same patch over the three days. As scouts abandoned food sources readily, 

they were automatically removed in our analysis. We then used this data to look at the 

repeatability of individuals in terms of the total dance circuits for a given food reward. 

We compared the intra-agent variation in dance activity for the same food source with 

the inter-agent variation in dance activity and obtained a measure of the consistency 

in activity (Nakagawa & Schielzeth, 2010). 

Initialization 

All agents were idle at the start of the simulation.  
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Sub models 

The Lévy flight 

The movement of agents during a search followed an optimal Lévy flight pattern 

(Reynolds, Swain, Smith, Martin, & Osborne, 2009). This sub model was used from 

Schürch and Grüter, 2012. Agents moved in bouts after initially choosing a random 

direction. Before the start of the bout, a total travel distance for the bout was 

calculated using the formula  . Here, a was obtained randomly from a 

uniform distribution bound by [0,1). The value for µLévy was kept at 2.4 by default 

(Reynolds et al., 2009). Once the distance of the bout was calculated, agents would 

then move in the chosen direction in subsequent time steps, till they had reached the 

end of the distance. Then, the whole process was repeated till the agent found a food 

source. 

The individual probability and intensity modulators for foragers 

Each bee had an individual internal probability and intensity modulator, which 

decided the probability that she would dance and the number of waggle runs in each 

dance for a given food reward. A normal distribution was chosen to define the 

distribution of modulators present in a population of foragers (Beshers & Fewell, 2001; 

Page & Robinson, 1991), and each forager was randomly assigned one value from this 

normal distribution. Thus, all 300 individuals showed quantitative differences in their 

link between food quality and dance probability (Fig. 5.2 a) and dance intensity (Fig. 

5.3 a).    

The decision to dance for food sources 

On returning to the hive, successful scouts and recruits would first unload the nectar 

that they had brought into the hive. They could then communicate information about 

the location of the food source to their nest-mates by performing a waggle dance. The 

forager would decide to dance only after she has finished unloading the nectar she has 

brought back while foraging. The equation that linked the probability of dancing to 

the food reward was 
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𝑝𝑞𝑡 =  
0.956937

1 + 𝑒(
𝐼𝑝−ln(𝑞𝑡)

0.2624014
)

 

Here Ip referred to the individual probability modulator and qt was the energetic value 

of a food source, given by 

𝑞𝑡 = 1.02 +  𝑞𝑝𝑎𝑡𝑐ℎ − 0.04915919 − 2.851457. 10−5. 𝑑 + 3.174098. 𝑑2 

where qpatch was the sucrose concentration of the food source and d was the distance of 

the food source from the hive. 

Our equation was modified from the earlier model, which in turn used data from 

previous empirical studies (Boch, 1956; Seeley, Camazine, & Sneyd, 1991). We 

incorporated individual probability modulators, thereby giving each individual agent a 

different quantitative relationship between food quality and dance probability. The 

mean value for the probability modulator was obtained by making two assumptions: 1) 

all individual agents had the same qualitative relationship between patch quality and 

dance probability as described in Schürch and Grüter, 2012 and 2) the probability 

modulators of the population of agents was normally distributed. We chose the mean 

and standard deviation of the probability modulator based on the average value of the 

curves fit for each agent, such that our two assumptions were met. 

The dance probability also depended on the influx of other foragers,  

𝑝𝐼𝑛𝑓𝑙𝑢𝑥 = {
1 − 0.035. 𝑁𝐼𝑛𝑓𝑙𝑢𝑥       𝑁𝐼𝑛𝑓𝑙𝑢𝑥 ≤ 20

         0.3                         𝑁𝐼𝑛𝑓𝑙𝑢𝑥 > 20
 

Thus, final dance probability was given by 

𝑝𝑑 = 𝑝𝑞𝑡. 𝑝𝐼𝑛𝑓𝑙𝑢𝑥 

The decision to abandon food sources 

The probability of abandoning the nectar source was modelled analogous to the 

probability of dancing (Schürch & Grüter, 2014; Seeley, 1989) with the probability 

modulator playing a role in the decision to abandon a food source: 
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𝑝𝑎 = 1 −  
0.956937

1 + 𝑒(
𝐼𝑝−ln (𝑞𝑡 +0.6687)

0.2624014
)

 

Individual dance intensity curves for foragers. 

Dance intensity was defined as the number of waggle runs that a bee makes per dance. 

The relationship between food quality and number of dance turns is linear (Seeley, 

1994). In our model each bee had a quantitatively different slope that predicted how 

much she would dance after returning to the hive.  

𝑑𝑎𝑛𝑐𝑒𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =  57 × 𝑞𝑡 × 𝐼𝑖 

Here Ii referred to the individual intensity modulator and qt was the energetic value of 

a food source. 

To obtain the value of the intensity modulator, we made 4 assumptions: 1) all 

individual agents had the same qualitative relationship between patch quality and 

dance intensity as observed in Seeley, 1994, 2) the intensity modulators of the 

population of agents was normally distributed, 3) all agents had the same intercept of 

zero for the linear link between patch quality and dance intensity, i.e., there was no 

dance activity for a patch of zero quality and 4) there is a maximal value of the dance 

intensity for the most rewarding food source [38]. Based on these assumptions, we fit 

individual curves for each agent and chose the mean and standard deviation of the 

intensity modulator. 

Sensitivity Analysis 

In order to test how sensitive our model was to changes in our two parameters of 

interest we ran a sensitivity analysis. We varied the distribution of the probability (Fig. 

5.2 b) and intensity modulators (Fig. 5.3 b) and observed its effect on consistent inter-

individual differences in the total dance activity. We varied the spread of the two 

parameters in such a way as to keep the coefficient of variation of both parameters 

similar across all comparisons. 

The probability equation was modified as shown below in order to vary the spread. 
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𝑝𝑎 = 1 − 
0.956937

1 + 𝑒(
(𝑚∗𝐼𝑝)−ln(𝑞𝑡)

0.2624014
)

 

The value of m was varied from 0.25 to 2 in steps of 0.25 to change the spread of the 

distribution (Fig. 5.2 b).  

To change the spread of the individual intensity curves (Fig. 5.3 b), we changed the 

standard deviation of the normal distribution of intensity modulator, while keeping 

the mean constant. The values of standard deviation were changed from 0.01 to 0.1 in 

steps of 0.01. 

We thus tested 80 different versions (all combinations of 8 levels of variation in 

individual probability modulator and 10 levels of variation in individual intensity 

modulator) and ran 100 simulations of each version for a total of 8000 simulations. 

Statistical Analysis 

We used generalized linear mixed effects models to quantify the repeatability in dance 

circuits of agents visiting the same food source in each simulation. Individual agent 

identity was used as a random effect to obtain the ratio of within-agent variation to 

amongst-agent variation (Nakagawa & Schielzeth, 2010). We obtained a single 

repeatability estimate for each of the 1200 simulations runs of each experiment. The 

repeatability estimates were then compared using a linear model with the estimate as 

the response variable and the experiment as the predictor. We corrected for multiple 

comparisons between the experiments using Tukey’s HSD. 

For the sensitivity analysis, we first obtained the repeatability estimates for all 8000 

simulation runs as before. Then, a LOESS model was fit to this data with the estimate 

as the response variable and an interaction between the coefficient of variation in the 

probability modulator and the coefficient of variation in the intensity modulator at 

0.8M as the predictor variable. We then predicted the repeatability estimates for other 

combinations of variation in the probability and intensity modulator from this fitted 

model. Finally, contour plots were used to examine the effect of the variation in 

probability and intensity modulators on repeatability of dance activity. 
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We built these generalized linear mixed effects models using the rptR package in R 

(Stoffel, Nakagawa, & Schielzeth, 2017). For linear models, we used the base package 

in R and for multiple comparisons, we used the glht function in the multcomp 

package (Hothorn, Bretz, & Westfall, 2008). We fit the LOESS model also using the 

base package in R. For data visualisation, we used the ggplot2 (Wickham, 2016) and 

cowplot (Claus O. Wilke, 2018) packages in R. 

Results 

Comparison of the different experiments 

The four experimental variations of the model significantly differed in the consistency 

of the total dance circuits made by the agents (Table 5.2, Fig. 5.4). Repeatability 

estimates were lowest in experiment 1 in which all agents were similar and had no pre-

defined individual specific modulators of dance activity (mean ± sd = 0.0328 ± 0.0327, 

p < 0.001). Incorporating individual variation in the probability of dancing in 

experiment 2 increased the repeatability estimate slightly (mean ± sd = 0.1156 ± 

0.0435, p < 0.001). However, in experiment 3 in which the agents had individual 

variation in the intensity of their dances, repeatability estimates were drastically 

higher (mean ± sd = 0.5965 ± 0.0459, p < 0.001). Surprisingly, in experiment 4, even 

though agents had individual variation in both the probability of dancing and 

intensity of dances, repeatability estimates were lower than in experiment 3 (mean ± 

sd = 0.4878 ± 0.0484, p < 0.001). 

Table 5.2 

Comparison Estimate t Value p Value 

Exp 2 – Exp 1 0.0828 47.10 <0.0001 

Exp 3 – Exp 1 0.5638 320.63 <0.0001 

Exp 4 – Exp 1 0.4550 258.77 <0.0001 

Exp 3 – Exp 2 0.4809 273.51 <0.0001 

Exp 4 – Exp 2 0.3721 211.65 <0.0001 

Exp 4 – Exp 3 -0.1088 -61.89 <0.0001 

 

Table 5.2: Results from multiple comparisons of the repeatability estimates from all four experimental 
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variations of our model. Comparisons were done using generalized linear hypothesis tests with Tukey’s 

HSD correction for multiple comparisons. The difference estimates, t values and associated p values are 

given. 

 

Comparison with empirical observations 

The repeatability estimates obtained from experiment 3 and 4 were similar to the 

repeatability estimate obtained from empirical data (see results for total dance circuits 

in chapter 2). The point estimate of the repeatability from empirical data (mean = 

0.5263, CI =0.4295 – 0.6002) was within the confidence intervals of the repeatability 

estimates from experiments 3 and 4 (Fig. 5.5). 

 

Figure 5.4 

 

Figure 5.4: Box and violin plots comparing the repeatability estimates of 1200 runs from each of the 4 

experiments. The boxplots give the median and the first and third quartile range, while the overlaid 

violin plot gives the distribution of the repeatability estimates from the 1200 runs. Different alphabets 

above the plots represent significant differences at the p < 0.001 level. All the experiments showed 

significant differences between each other in their repeatability estimates. 
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Sensitivity Analysis 

The variation in individual intensities had a stronger effect on the repeatability 

estimates as compared to the variation in individual probabilities (Fig. 5.6). Higher 

variation in the intensity modulators amongst individual foragers led to repeatability 

estimates greater than 0.5. However, variation in probability modulators had very 

little effect on the repeatability estimates. Interestingly, repeatability estimates were 

highest when variation in intensity modulators were high and the corresponding 

variation in probability modulators were low. 

 

Figure 5.5 

 

Figure 5.5: Comparison of the repeatability estimate and 95% confidence interval for the total dance 

circuits obtained from empirical observations (red, see chapter 2), experiment 3 (blue) and experiment 

4 (dark green). The dashed horizontal line represents the repeatability estimate from empirical 

observations. This value was within the 95% confidence interval of the estimates obtained from 

experiments 3 and 4. 
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Discussion 

The agent-based model showed that individual variation in the intensity modulator is 

sufficient to obtain highly repeatable inter-individual variation in the waggle dance 

activity. Even though the total waggle dance activity of an individual is a function of 

both the intensity and probability of dancing, the probability modulator had very little 

effect on consistent inter-individual variation in the waggle dance activity. 

Additionally, the individual variation in dance probability and intensity [based on 

other empirical data (Boch, 1956; Seeley, 1994; Seeley et al., 1991)] were able to 

reproduce the degree of consistent inter-individual differences in the total recruitment 

seen in our own observations of honey bee foragers (George & Brockmann, 2019). 

The strong effect of individual variation in the intensity modulator on consistent 

inter-individual variation in the waggle dance activity supports results from other 

studies on the waggle dance activity. The intensity of dance activity is weakly 

correlated with the gustatory response threshold (see chapter 4). Gustatory response 

thresholds of individual honey bees can change over their lifetime, as they transition 

from one task to another (Reim & Scheiner, 2014; Scheiner, Page, & Erber, 2001). 

However, since these thresholds can directly affect an individual’s response to a 

stimulus (Beshers & Fewell, 2001; Scheiner, Erber, & Page, 1999; Weidenmüller, 

2004), they can be expected to remain relatively stable for the duration that 

individuals are engaged in the same task, like foraging. The link between the gustatory 

response thresholds and individual dance intensity would imply that individual 

variation in dance intensity would remain relatively stable. 

In contrast, previous experiments showed no link between the probability of dancing 

and gustatory response thresholds (see chapter 4). Dance probability, in addition to 

being affected by other internal individual thresholds, could also be strongly 

influenced by other factors (Farina, 2000; Seeley, 1989). Previous studies showed a 

strong effect of changing social cues on individual dance probability (Farina, 2000; 

George & Brockmann, 2019). Interestingly, these studies showed no concurrent effect 

of social cues on individual dance intensity. These results along with our simulations 
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suggest that consistent inter-individual variation in the recruitment activity of honey 

bee foragers is strongly driven by individual variation in their waggle dance intensity, 

which is further modulated by social cues through its effect on dance probability. 

 

Figure 5.6 

 

Figure 5.6: Contour plot showing results from the sensitivity analysis. The repeatability estimates 

obtained from varying the coefficient of variation in the probability and intensity modulators are 

plotted. The estimates are colour coded from blue (representing a low repeatability estimate, 0) to red 

(representing a high repeatability estimate, 0.6). Variation in the intensity modulator had a greater 

effect on the repeatability estimates than variation in the probability modulator.  
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Although there has been extensive work using ABMs to explore the collective foraging 

behaviour of honey bees, these models have not implemented consistent inter-

individual variation in behavioural responses (Bailis et al., 2010; Beekman & Lew, 

2007; A. Dornhaus et al., 2006; Schürch & Grüter, 2014). Our agent-based model on 

consistent inter-individual differences in the waggle dance activity of honey bee 

foragers is a first step in this direction. In the immediate future, we plan to implement 

two new dimensions in our model. The first would be to add more realistic 

environmental conditions with respect to food availability. Building on Schürch & 

Grüter’s (2014) model, this would help us to understand the effect of inter-individual 

variation in recruitment activity on colony fitness. This could help us understand the 

adaptive function of variation in dance activity seen in empirical observations [9]. 

(George & Brockmann, 2019; Seeley, 1994). The second would be to add a new agent, 

in-hive receivers, to our model. Interactions with receivers can have a strong effect on 

the dance activity of foragers, particularly on the probability of dancing (Farina, 2000; 

George & Brockmann, 2019; Seeley, 1989). Thus, individual variation in receivers and 

the interactions between receivers and incoming foragers can be expected to play a 

role in maintaining consistent inter-individual variation in dance activity, and affect 

the collective foraging behaviour of a honey bee colony. 

Our study adds to the growing body of literature of agent-based models focussed on 

individual variation and heterogeneity with respect to behavioural responses. 

Although models have explicitly simulated individual heterogeneity, very few studies 

have incorporated consistent inter-individual differences (Campos, Bartumeus, 

Mendez, Andrade, & Espadaler, 2016; Evers, de Vries, Spruijt, & Sterck, 2011). The 

studies which have focussed on consistent inter-individual variation have mostly 

stressed on the role played by it in key aspects of social groups like their structure and 

collective foraging (Couzin, Krause, James, Ruxton, & Franks, 2002; Michelena, 

Jeanson, Deneubourg, & Sibbald, 2010; Pinter-Wollman, 2015). Very few theoretical 

studies have sought to understand mechanisms underlying inter-individual variation 

in behavioural responses in social groups (Boumans, de Boer, Hofstede, & Bokkers, 

2018; Boumans, Hofstede, Bolhuis, de Boer, & Bokkers, 2016). 
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In conclusion, our agent-based model highlights the parameters sufficient to produce 

consistent inter-individual differences in waggle dance activity. It adds to other 

empirical observations on how social cues and response thresholds can modulate the 

probability and intensity of an individual’s activity differently (Farina, 2000; Garrison, 

Kleineidam, & Weidenmüller, 2018; George & Brockmann, 2019). Taking into account 

individual behavioural differences while modelling group dynamics can drastically 

alter predictions on how these groups can respond to perturbation (Vindenes & 

Langangen, 2015). Our model serves as a first step to bring together theoretical work 

on honey bee colony foraging dynamics with empirical observations of inter-individual 

differences in activity (M. A. Becher et al., 2016; George & Brockmann, 2019; Schürch 

& Grüter, 2014; Seeley, 1994; Tenczar et al., 2014; Walton & Toth, 2016). 

Future Directions 

The agent-based model that is described in this chapter can be expanded to answer 

more complex questions. One immediate next step would be to test the colony’s 

foraging success with and without individual variation in the recruitment process 

under more natural conditions of food availability (Schürch & Grüter, 2014). These 

experiments would help to understand the adaptive benefit of the inter-individual 

variation under different conditions of food availability. 

Another important question that can also be looked at would the role of inter-

individual differences in how colonies respond to loss of foragers (see chapter 3). This 

would require the addition of a third type of agent, the receivers, and a more dynamic 

formulation of the interaction between receivers and foragers. Adding receivers to the 

model would also help in incorporating individual variation in responding to social 

cues, a factor that may also play a strong role in the efficient utilisation of the foragers 

available to the colony. 

Finally, a third area worth exploring is the interplay between response thresholds, 

response probability and response intensity. The model described here only 

incorporates individual variation in the latter 2 parameters in determining the 

behavioural response of the waggle dance activity. A more realistic model should also 

incorporate individual variation in response thresholds with respect to the patch 
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quality. The effect of varying the strength of the correlation between the 3 response 

parameters on consistent recruitment activity of individual agents would be 

particularly interesting to quantify. 
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Chapter 6 – Conclusion 

Honey bee forager groups consist of individuals who show consistent differences in 

their recruitment behaviour. Forager groups responded to a decrease in the group size 

by increasing their recruitment activity. This was driven by an increase in the activity 

of foragers who were already more involved in the task of recruitment within the 

group. The increase in activity was greater in dance probability as compared to dance 

intensity and was likely in response to changing social cues associated with the 

decrease in nectar influx. In contrast, the dance intensity of foragers correlated with 

gustatory response thresholds (GRTs) thresholds, whereas there was no correlation 

between dance probability and the GRT. Agent-based model simulations showed that 

dance intensity correlated more with consistent inter-individual differences in the 

recruitment activity of foragers, under constant environmental and social conditions, 

rather than dance probability. This thesis is the first detailed study of the role of inter-

individual differences in dance activity within forager groups, and specifically the 

interplay between social modulation (through dance probability) and internal 

behavioural states (dance intensity linked to thresholds) in the recruitment activity of 

honey bee foragers. 

What is the role of individual variation in group responses? 

Consistent inter-individual variation in the recruitment activity within forager groups 

can help the colony in various contexts during the natural foraging process. Once a 

new food source is discovered, the colony would need to simultaneously invest in both 

foraging and recruitment for a short duration till an appropriate number of foragers 

are active at this source (Kirchner & Lindauer, 1994; C. Thom, 2003; Corinna Thom, 

Gilley, & Tautz, 2003; von Frisch, 1967). Inter-individual differences in recruitment 

would allow some foragers to continue exploiting the food source while others invest 

in expanding the forager group (Fig. 6.1 a). Since food sources can be transient, this 

would help the colony ascertain the reward value of the source while maintaining a 

competitive advantage (Seefeldt & De Marco, 2008; Seeley & Visscher, 1988; 

Stabentheiner & Kovac, 2016; Tan et al., 2015; P. Kirk Visscher & Seeley, 1982).
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The second advantage of inter-individual variation within the forager group would be 

when the group faces some perturbation (Fig. 6.1 a). The loss of foragers from a group 

decreases the nectar influx into the colony and changes the social interactions of the 

remaining foragers with receivers and other nest mates (De Marco & Farina, 2001; 

Seeley, 1986, 1989; P.K. Visscher & Dukas, 1997). Inter-individual variation in 

responding to these social cues would ensure that only some individuals initiate or 

increase recruitment for the food source. The colony can also benefit from having 

inter-individual differences amongst foragers when there is a change in the relative 

value of a food source (Fig. 6.1 b). Food sources available to the colony can bloom and 

deplete rapidly (P. Kirk Visscher & Seeley, 1982) and so the relative value of any food 

source can increase or decrease accordingly. In case of an increase in relative reward 

value, the forager group size has to be increased proportionately. Only a few 

individuals, who are more sensitive to social cues (De Marco & Farina, 2001; Seeley, 

1986, 1989), need to initiate or increase recruitment to expand the forager group. 

Inter-individual variation in recruitment would also be beneficial when the colony 

needs to abruptly reduce recruitment to a food source (Fig. 6.1 b). In case of predation 

at the food source, only the more active individuals need to experience stop signals to 

effectively shut down further recruitment to the food source (Nieh, 2010; Tan et al., 

2016). Additionally, if the relative reward value decreases, then those foragers which 

perceive the food as being more rewarding will persist at the food source while others 

will abandon it (Al Toufailia, Grüter, & Ratnieks, 2013; Scheiner, Erber, & Page, 1999; 

Seeley, 1989, 1994; Townsend-Mehler, Dyer, & Maida, 2010). Thus, inter-individual 

differences within forager groups provide the colony with greater flexibility in 

responding to changing social and environmental conditions. 

Consistent inter-individual differences in recruitment adds to our understanding of 

task partitioning in honey bee foragers (George & Brockmann, 2019; Seeley, 1994; 

Tenczar, Lutz, Rao, Goldenfeld, & Robinson, 2014). So far, 7 different behavioural 

phenotypes of foragers have been identified: novice foragers, scouts, recruits, 

employed foragers, unemployed experienced foragers, inspectors and reactivated 

foragers (Biesmeijer & Vries, 2001; de Vries & Biesmeijer, 1998). However, this 

classification fails to take into account the task of communication and recruitment. 
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Since the decision to recruit is subsequent to the decision to continue foraging, 

individuals more active in recruitment can be described as being more invested in the 

food source. Thus, employed foragers can be further divided into more invested and 

less invested employed foragers. Under this classification, the role of inspectors (more 

persistent) and reactivated foragers (more reticent) could also be considered as 

correlating with higher and lower levels of investment respectively (Granovskiy, Latty, 

Duncan, Sumpter, & Beekman, 2012; Townsend-Mehler et al., 2010; Wagner, Van 

Nest, Hobbs, & Moore, 2013). This broad classification can be a useful approximation 

to disentangle the complexity in the regulation of the foraging behaviour of honey 

bees. 

My findings are in line with contemporary studies on how inter-individual differences 

can affect group responses (Crall et al., 2018; Firth et al., 2017; Garrison, Kleineidam, & 

Weidenmüller, 2018; Rudin, Tomkins, & Simmons, 2018). Perturbations to the group 

led to some individuals changing their consistent activity level. In honey bees (this 

thesis), crickets (Rudin et al., 2018) and great tits (Firth et al., 2017), inter-individual 

differences before the removal could reliably predict the individual’s response to the 

changed social context. Additionally, removal experiments targeting foragers in honey 

bees (this thesis) and bumblebees (Crall et al., 2018) show how colonies can rapidly 

respond to the loss of foragers by changing social interactions in the colony. A more 

recent study on thermoregulation in bumblebees is in contrast with these previous 

studies (Garrison et al., 2018). Bumblebee workers respond to increasing brood 

temperature by fanning. Garrison et al., (2018) found that there was no link between 

the behavioural response of individual workers tested in isolation and in social groups 

of 9 other workers. The authors suggest that in this specific behaviour, consistent 

group level responses can be obtained by behavioural flexibility of individual workers. 

One important caveat of these experiments is that they were not done in the nest but 

in an artificial set up. The spatial position in the nest and associated cues of 

bumblebee workers play a strong role in their behavioural decisions (Crall et al., 2018). 

Fanning behavioural responses in the nest might differ from responses in an artificial 

set up. Nevertheless, all the studies and this thesis point to how consistent inter-

individual differences can help social groups to cope with changing conditions. 
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Figure 6.1 

 

Figure 6.1: Representation of different contexts in which inter-individual variation within forager groups 

can help the colony. (a) The first two contexts involve flexibly changing the forager group size. Inter-
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individual variation in the recruitment activity can help the colony during the initiation of foraging as 

colonies can continue to exploit the food source and expand the forager group size. The graded 

recruitment to a new food source will also give the colony time to ascertain the reward value of the food 

source and hence prevent over-investment. A loss of foragers is another context in which individual 

variation can be beneficial. In such a situation, the colony only needs to have a few individuals 

recruiting to maintain the forager group size. (b) The next two contexts involve the colony flexibly 

dealing with changing food availability. The depletion of existing food sources or the discovery of better 

food sources can increase and decrease the relative reward value of one particular food source 

respectively. In the former case, the colony will only need to have a few individuals recruiting to 

maintain the forager group size. In the latter case, stop signals only need to target the individuals more 

active in their dance behaviour to shut down further recruitment to the food source. This would be the 

case when there is predation at the food source also. In addition, individual variation in perception 

would mean that some of the most invested foragers would continue to persist at the food source which 

would allow the colony to keep a check on previously rewarding food sources. 

 

The nascent body of literature on behavioural consistency in the context of social 

groups also provides some hints as to how these groups might trade-off the 

behavioural consistency of group members and the behavioural flexibility needed to 

adapt to changing conditions. Depending on the behavioural stimuli and the social 

group structure, there can either be a change in the responses of individuals already 

responding to the stimuli (Firth et al., 2017; Rudin et al., 2018, this thesis), or a 

turnover in the individuals responding to the stimuli (Crall et al., 2018; Garrison et al., 

2018). In addition, if the perturbation is environmental, the individuals may respond 

directly to the environmental stimuli (Garrison et al., 2018; Rudin et al., 2018) or 

indirectly through social cues and signals (Crall et al., 2018; Firth et al., 2017, this 

thesis). Finally, individual responses to changing social cues and signals can be due to 

differences in perception of these social signals (Garrison et al., 2018; Rudin et al., 

2018, this thesis), or due to differences in exposure to the social signals (Crall et al., 

2018; Firth et al., 2017). However, more work needs to be done to establish the 

generality of these mechanisms across groups which differ in their structure and 

dynamics as well as across behavioural contexts. Further studies involving 

comparative experiments to either observe the responses of the same social groups to 

differing behavioural contexts (e.g., perturbation in the form of predation and a 
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perturbation in the form of changing food availability) or to observe the responses of 

different groups in the same behavioural context (e.g., bumblebee and honey bee 

foragers to changing food availability) would be particularly useful. 

Response thresholds, Probability and Intensity: are they correlated? 

Response thresholds are widely considered to be the major physiological basis of 

division of labour in social insects (Beshers & Fewell, 2001; de Oliveira & Campos, 

2019; Dornhaus, Klügl, Puppe, & Tautz, 1998; Gardner, Foster, & O’Donnell, 2007; 

Noa Pinter-Wollman, Hubler, Holley, Franks, & Dornhaus, 2012; Reim & Scheiner, 

2014; Weidenmüller, 2004). However, response probability and response intensity 

might also play an important role in the division of labour within colonies (Jeanson & 

Weidenmüller, 2013; Weidenmüller, 2004). Most studies so far have neglected a link 

between these 3 response parameters, possibly due to the difficulty in dissociating 

response thresholds and probability in an experimental set up. While threshold 

represents the absolute intensity of a stimulus at which an individual responds, the 

probability and intensity can only be determined by testing the same individuals 

multiple times. Gustatory response thresholds (GRTs) or sucrose responsiveness 

correlates with division of labour in several species of eusocial insects (Josens, Lopez, 

Jofré, & Giurfa, 2018; Perez, Rolland, Giurfa, & D’Ettorre, 2013; Reim & Scheiner, 2014). 

The waggle dance behaviour provides a robust behavioural paradigm to explore 

whether the GRT is linked to the probability and intensity of individuals in the task of 

recruitment since forager responses to repeated exposures to the same stimuli (food 

reward) can be quantified easily under natural conditions. 

The GRT and dance intensity showed a weak correlation, whereas the GRT and dance 

probability did not. These results likely reflect the process of recruitment in honey bee 

colonies. The total recruitment to a food source is dependent more on the number of 

dances than the duration of these dances since recruits follow multiple dances but 

only for a few waggle runs each before flying out (Seeley, 1995; Seeley & Towne, 1992). 

Hence, the probability of dancing should be expected to be more sensitive to changing 

social cues rather than the intensity. 
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An alternate explanation for the weak correlation is that other thresholds may be 

linked to the waggle dance behaviour (Fig. 6.2). Under free flying conditions, foragers 

make successive behavioural decisions related to the food reward. The first of these 

would be to probe the food source by extending their proboscis, a behavioural 

response similar to the proboscis extension reflex assay used for quantifying the GRT 

(Scheiner et al., 1999; Scheiner, Page, & Erber, 2004). The next behavioural decision 

would be to accept the food reward at the source. The final two decisions would be 

back in the hive, wherein the forager would decide to continue foraging at the food 

source and then decide to communicate about the food source. Different thresholds 

are likely associated with each of these behavioural decisions. Experiments with free 

flying foragers showed that the sucrose acceptance threshold of an individual forager 

(related to the behavioural decision to accept the food reward) is different from its 

GRT (Mujagic & Erber, 2009; Mujagic, Sarkander, Erber, & Erber, 2010). An additional 

‘dance initiation threshold’, linked to the decision to communicate about the food 

source, might show a stronger link with dance activity. 

Figure 6.2 

 

Figure 6.2: The different behavioural decisions that a forager makes during a trip to a food source and 

the thresholds that could be associated with each of these decisions. When it reaches the food source, 

the forager will first probe the food source, a behavioural response similar to the proboscis extension 
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reflex used to quantify gustatory response thresholds. The forager can then decide to accept this food 

source, a behavioural decision that correlates with the foragers sucrose acceptance threshold [43], [44]. 

After it gets the nectar load back to the hive the forager can then decide to continue foraging at the 

food source and further, recruit to the food source. A foraging threshold and a dance initiation 

threshold might show a strong correlation with the last two behavioural decisions. 

 

Figure 6.3 

 

Figure 6.3: (a) The relationship between gustatory response thresholds, dance probability and dance 

intensity of 110 foragers from 3 different colonies (see chapter 4). A locally estimated scatterplot 

smoothing (LOESS) function was used to produce the surface depicting the relationship between the 

three response parameters. (b) Behavioural responses of individual workers to a task-associated 

stimulus in eusocial groups is dependent on the link between response thresholds, response probability 

and response intensity. These three response parameters can be further modulated by social cues and 

signals to varying degrees depending on the task. The interplay between the three response parameters 

and the social context would likely lead to division of labour in eusocial groups. 

 

All three behavioural parameters, thresholds, probability and intensity, that 

determines an individual workers response to a stimulus are likely to be modulated by 

social cues (Beshers & Fewell, 2001; Beshers, Huang, Oono, & Robinson, 2001; Breed, 

Williams, & Queral, 2002; Naug & Gadagkar, 1999; O’Donnell, 1998; Noa Pinter-
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Wollman et al., 2012; Seeley, 1989). Workers with different combinations of response 

threshold, probability and intensity would provide the colony with a wide range of 

behavioural responses to any change in stimuli (Fig. 6.3 a). The results of my thesis 

suggest that in recruitment in honey bees the response probability is strongly 

modulated by social cues, whereas the response threshold and response intensity are 

linked and likely represent a fixed behavioural ‘state’ of the individual for this task. 

The relationship between the three parameters, as well as the strength of their 

modulation by social cues may vary depending on the task. 

Agent- based model simulations can provide a useful toolkit to explore the link 

between the three response parameters and the social context in a task specific 

manner at the colony level (de Oliveira & Campos, 2019). Apart from looking at how 

these parameters can lead to task partitioning, models can also be used to look at the 

conditions under which individual variation in these parameters can be beneficial 

(Boumans, de Boer, Hofstede, & Bokkers, 2018; Boumans, Hofstede, Bolhuis, de Boer, 

& Bokkers, 2016; Campos, Bartumeus, Mendez, Andrade, & Espadaler, 2016; Schürch & 

Grüter, 2014). The model described in chapter 5 can be expanded in the future to 

include individual variation in a ‘dance initiation threshold’, and thereby explore the 

link between the three response parameters in the task of recruitment. Further, ABMs 

can also be useful as a framework for designing experimental studies based on how 

various factors (like social interactions) can be expected to modulate the three 

response parameters (Allegue et al., 2017). Thus, a combination of theoretical models 

and empirical observations can be used to formulate a broader conceptual framework 

on division of labour in social insects and other social groups, taking into account the 

nature of the task and the link between social cues and response thresholds, 

probability and intensity (Fig. 6.3 b). 

Outlook 

In conclusion, this thesis adds a new aspect to the complex regulation of foraging in 

honey bee colonies and highlights the role of consistent inter-individual differences in 

this regulation. The relationship between consistent inter-individual differences in 

response thresholds, probability and intensity and division of labour in eusocial 
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groups needs to be explored. In addition, at the level of social groups, the role played 

by consistent inter-individual differences in driving group responses needs to be 

understood further. This would need synergistic studies linking together behavioural 

syndromes and social context in animal groups using advanced technical and 

analytical methods (Arganda, Hinz, de Polavieja, Pérez-Escudero, & Vicente-Page, 

2014; Farine & Whitehead, 2015; N. Pinter-Wollman et al., 2013; Sridhar, Roche, & 

Gingins, 2019; Wild et al., 2018). Such studies are all the more urgent given the 

drastically changing environmental conditions that group living animals are facing. 
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Chapter A1 – Recruits 

Introduction 

Honey bee foragers make up a large proportion of the workforce of the colony (Seeley, 

1995; Thom, Seeley, & Tautz, 2000). Foragers can be classified into pollen, nectar or 

sometimes even water foragers based on the resource they bring back to the colony 

(Seeley, 1995; von Frisch, 1967). Further, based on how they found the food source, 

foragers can also be classified into scouts and recruits (Seeley, 1983). Scouts are 

exploratory in nature and find novel food sources to which they recruit other foragers. 

Scouts show low food site fidelity and abandon food sources quickly to find new ones 

(Beekman & Gilchrist, 2007; Liang et al., 2012). Recruits are exploiters who forage at 

food sources to which they have been recruited to. They continuously visit a food site 

till it becomes less rewarding (Wells & Wells, 1986). The presence of scouts and 

recruits helps the colony flexibly explore and exploit food sources in the environment 

around it. 

Efficient utilisation of the foraging force available to the colony depends on effectively 

responding to biotic and abiotic cues associated with foraging. Nectar foragers, on 

returning to the hive, interact with receivers who unload the nectar that the foragers 

have brought in (Seeley, 1982, 1995). Foragers get to know about the state of the 

colony food stores as well as the nectar influx into the colony from these interactions 

(De Marco & Farina, 2001; Fernandez, Gil, Farina, & Farina, 2003; Seeley, 1989). This 

information, along with the perceived value of the food source (Al Toufailia, Grüter, & 

Ratnieks, 2013; George & Brockmann, 2019), modulates the motivation of the foragers 

to recruit to the food source. The total recruitment to each food source is 

proportionate to the perceived reward value of the food source relative to all other 

food sources that the colony is exploiting (Seeley, 1986; Seeley & Towne, 1992). Thus, 

each food source is exploited by a group of foragers proportional to its current reward 

value for the colony. 

Increasing recruitment to a food source will increase the nectar influx into the colony, 

which would have an inhibitory effect on the foragers’ motivation to recruit. However, 

no study has quantified how individual foragers respond to increasing recruitment. In 
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this chapter, I look at how individual foragers respond to the presence of recruits in 

the forager group and the time dynamics of the dance activity of foragers and recruits. 

This will give us a greater understanding of the regulation of foraging behaviour in a 

honey bee colony. 

Materials and Methods 

Apis mellifera colonies 

The maintenance of the colonies used in these experiments followed the same 

protocol as in chapter 2. 

Forager training 

The protocol for training the foragers in these experiments were the same as described 

earlier in chapter 2. 

Individual Identification 

The protocol for tagging and identifying individuals in these experiments were the 

same as described earlier in chapter 2. 

Experimental Protocol 

The experiments were started 2 days after the tagging process and consisted of 2 

consecutive days of observation of the individually marked foragers (Fig. A1.1). All 

experiments were started when there were at least 11 foragers coming to the feeder. 

After this, any other marked individual forager was caught and put on ice for the 

duration of the observations on that day. All unmarked recruits that were coming to 

the feeder during this time were also caught and put on ice till the end of the 

observation period on each day. 

On each day, the observations lasted for 3 hours. The feeder was filled with 1M sucrose 

solution throughout the 3 hours of observation. The sucrose concentration was 

maintained at 1M to observe the effects of recruitment on dance activity without the 

confounding effect of changing reward conditions. The foraging and dance activity of 

the tagged foragers were observed during these 3 hours. In addition, the total number 

of dances made by unmarked individuals in the hive were also observed.  



 Chapter A1 – Recruits | Materials and Methods 
 

191 
 

The two days of the recruit experiments differed in the size of the forager group that 

was active at the food source. On the first day of the experiment (Pre-recruit phase), a 

protocol similar to the consistency experiments were followed, in which all unmarked 

recruits coming to the feeder were caught and only the individually marked foragers 

were allowed to feed. On the second day of the experiment (Post-recruit phase), the 

recruitment process was unhindered and none of the recruits coming to the feeder 

were caught. 

Figure A1.1 

 

Figure A1.1: Experimental protocol for the recruit experiments. The basic experimental protocol is the 

same as the consistency experiments with 3-hour observations per day. But the feeder was provided 

with 1 M sucrose throughout the 3 hours. The recruit experiments were done over 2 days and consisted 

of 2 phases, a pre-recruit phase (day 1) and a post-recruit phase (day 2). Similar to the consistency 

experiments, in the pre-recruit phase, recruits coming to the feeder were caught and kept on ice. In the 

post-recruit phase, the recruits were allowed to join the forager group at the feeder. 
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One the first day, two observers were present at the feeder and one was present at the 

hive. At the feeder, one of the observers noted the time when each forager landed at 

the feeder with a resolution of one minute. The other caught all the recruits that were 

coming to the feeder to keep the individually marked foragers motivated to dance 

throughout the experiments (Seeley, 1995). The observer near the hive would video 

record the dances of the individually marked foragers. Recordings were made using a 

Sony Handycam (HDR CX260/HDR CX240) at 1080p and 25/50 frames per second. 

The recordings were started when any of the marked individuals started dancing and 

were stopped when none of the marked individuals were dancing. On the second day, 

one observer was present at the feeder and another at the hive. The observer at the 

feeder kept a note of the landing times of the individual foragers. The observer at the 

hive recorded the waggle dances of individually tagged foragers as described above. At 

the same time, the observer also noted down the number of dances made by the 

recruits in time-bins of 2 minutes. The dances of the recruits were not recorded, as 

individual recruits could not be identified. In total 32 individuals from 4 different 

forager groups from 2 colonies were tested (Table A1.1). 

Table A1.1 

Forager Group 

Name 

Month Year Forager Group 

Size 

Colony 

A1 March 2016 7 4 

A2 May 2017 6 9 

A3 June 2017 11 9 

A4 June 2017 8 9 

 

Table A1.1: The identity of the forager group, the month and year when the group was observed, the 

forager group size and the colony to which the forager group belonged to in the consistency 

experiments. 
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Video Analysis 

The recorded dances of the foragers were then analysed manually using the open 

source VLC Media Player. Since the feeder location was very close to the hive, most 

foragers did dances with very short waggle phases (Gardner, Seeley, & Calderone, 

2008). The total number of circuits performed by each forager during each dance was 

obtained from the videos. Each dance circuit involved the forager walking in a circular 

path with a short waggling motion of her abdomen at the end of the path (Sen Sarma, 

Esch, & Tautz, 2004).  

Statistical Analysis 

The statistical analysis focussed on 6 different behavioural parameters estimated for 

each bee for each day. They were: 1) total number of dance circuits, 2) total number of 

dances, 3) total number of foraging trips, 4) the probability of dancing (the ratio of the 

total number of dances to the total number of trips), 5) the ratio of the total number 

of circuits to the total number of dances (referred to as Circuits/Dances) and 6) the 

ratio of the total number of circuits to the total number of trips (referred to as 

Circuits/Trips). The last two ratios are different methods of calculating the intensity of 

the dances made by the foragers. Circuits/dances gives an estimate of how much a 

forager dances on average and is a good proxy for how rewarding the food source is 

(Seeley, 1994). On the other hand, the circuits/trips parameter provides an estimate 

for the intensity of the dances normalised to differences in the number of foraging 

trips made by different foragers over the 6 days. All 6 parameters were calculated from 

the total activity of each forager over 3 hours. 

In the recruit experiments, the data for 5 parameters (except foraging trips) were zero-

inflated, as most foragers stopped their dance activity in the post-recruit phase. Hence 

GLMMs were fitted using Tweedie error distributions to account for the zero-inflation. 

GLMMs were built with each of the parameters as the response variable, presence of 

recruits (a categorical variable of two levels; pre and post) as the predictor and the 

forager group as a random effect. For foraging trips, GLMMs were built with a Poisson 

error distribution. In the case of the number of dances, the fitted GLMM with a 
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Tweedie distribution was computationally singular. Hence, a GLMM with Gaussian 

error distribution was fit after adding a small noise value to the number of dances. 

In addition, in the forager group A1, some of the individually marked foragers made 

recruitment dances in the beginning of the post-recruitment phase. So, in this repeat 

the time dynamics of the dances made by marked foragers and recruits in the 3-hour 

observation period of the 2nd day (post-recruit phase) were compared. First, the 

number of dances made by marked foragers and recruits were binned int 2-minute 

time intervals. Then, the cumulative proportion of the dances in each bin were 

obtained for both recruits and foragers. Finally, these two distributions were 

compared using a chi-squared test. In the other forager groups, none of the marked 

foragers made any dances in the post-recruit phase, and hence this comparison could 

not be made. Further, since only the number of dances of recruits were observed, this 

comparison could not be done for any of the other 5 parameters. 

The Tweedie distribution was fitted using the tweedie package (Dunn & Smyth, 2005, 

2008) and GLMMs were built using the glmmPQL function in the MASS package 

(Venables & Ripley, 2002) and the statmod package (Smyth, 2002) in R (R Core Team, 

2018). All the graphs were made in R using the ggplot2 (Wickham, 2016) and cowplot 

(Claus O. Wilke, 2018) package. 

Results 

Allowing recruits to join the forager group had an immediate strong effect on the 

dance activity of foragers. Most of the marked foragers (27 out of 32 foragers) 

completely stopped dancing in the post-recruit phase (day 2). 

Dance Circuits 

The power variance index of the fitted Tweedie distribution for the total dance circuits 

was 1.312. The GLMM fit with this error distribution showed that individuals decreased 

the total dance circuits in the post-recruit phase as compared to the pre-recruit phase 

(Fig. A1.2 a, difference estimate = 162.845, CI = 133.075 – 192.616, p < 0.001). The 

dance circuits performed by the foragers in the post-recruit phase was also not 

significantly different from zero (mean = 0.0295, p = 0.9134). 
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Figure A1.2 

 

Figure A1.2: The activity of foragers in the pre (circles) and post-recruit phase (triangles) in (a) total 

dance circuits, (b) number of dances and (c) number of foraging trips of all 32 foragers from 4 forager 
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groups. Colours represent different individuals, with the same columns representing the activity of the 

same individuals in the different parameters. 

 

Number of Dances 

The GLMM showed that individuals decreased the number of dances in the post-

recruit phase as compared to the pre-recruit phase (Fig. A1.2 b, difference estimate = 

18.781, CI = 14.756 – 22.806, p < 0.001). The number of dances performed by the 

foragers in the post-recruit phase was also not significantly different from zero (mean 

= 1.340, p = 0.6485). 

Foraging Trips 

The GLMM fit with the Poisson error distribution showed that individuals decreased 

the foraging trips in the post-recruit phase as compared to the pre-recruit phase (Fig. 

A1.2 c, difference estimate = 31.957, CI = 27.096 – 36.817, p < 0.001). But the number 

of foraging trips they performed was significantly higher than zero (mean = 43.524, p < 

0.001). 

Probability of Dancing 

The power variance index of the fitted Tweedie distribution for the probability of 

dancing was 1.246. The GLMM fit with this error distribution showed that individuals 

decreased the probability of dancing in the post-recruit phase as compared to the pre-

recruit phase (Fig. A1.3 a, difference estimate = 0.259, CI = 0.205 – 0.312, p < 0.001). 

The probability of dancing of the foragers in the post-recruit phase was also not 

significantly different from zero (mean = 0.0001, p = 0.884). 

Circuits/Dances 

The power variance index of the fitted Tweedie distribution for circuits/dances was 

1.03. The GLMM fit with this error distribution showed that individuals decreased 

their circuits/dances in the post-recruit phase as compared to the pre-recruit phase 

(Fig. A1.3 b, difference estimate = 8.861, CI = 7.911 – 9.811, p < 0.001). The 

circuits/dances of the foragers in the post-recruit phase was also not significantly 

different from zero (mean = 0.003, p = 0.852). 
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Figure A1.3 

 

Figure A1.3: The activity of foragers in the pre (circles) and post-recruit phase (triangles) in (a) 

probability of dancing, (b) circuits/dances and (c) circuits/trips of all 32 foragers from 4 forager groups. 
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Colours represent different individuals, with the same columns representing the activity of the same 

individuals in the different parameters. 

 

Figure A1.4 

 

Figure A1.4: The normalised cumulative distribution of dances by foragers and recruits in forager group 

A1 in the post-recruit phase (day 2). The distributions were significantly different, with the foragers 

initially dancing more than recruits. Recruits increased their dance activity later but continued to dance 

for longer. 

 

Circuits/Trips 

The power variance index of the fitted Tweedie distribution for circuits/trips was 

1.296. The GLMM fit with this error distribution showed that individuals decreased 

their circuits/trips in the post-recruit phase as compared to the pre-recruit phase (Fig. 

A1.3 c, difference estimate = 2.250, CI = 1.828 – 2.673, p < 0.001). The circuits/trips of 

the foragers in the post-recruit phase was also not significantly different from zero 

(mean = 0.0004, p = 0.92). 
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Time dynamics of dances by foragers and recruits 

The time dynamics of dances made by foragers and recruits were different (χ2 = 

44.801, df = 15, p < 0.001). The cumulative proportion of dances distribution of 

foragers increased and saturated earlier as compared to the distribution of recruits 

(Fig. A1.4).  

Discussion 

Allowing recruits to join the forager group led to a drastic reduction in the dance 

activity in all forager groups tested. Most experimental foragers in these groups 

completely stopped their dance activity. In contrast to the removal experiments, the 

whole forager group was affected and not just specific individuals. In the experimental 

repeat where some foragers continued dancing, the time dynamics of the dances by 

foragers and recruits differed, with foragers dancing initially, followed by recruits. 

The dramatic reduction in dance activity can be explained by the same mechanism as 

in the removal experiments. Allowing recruits to join the forager group increased the 

nectar influx into the colony (Seeley, 1989) which caused a change in the interactions 

of foragers and receivers. In these experiments, the increase in nectar influx and hence 

the change in stimulus was so large that even those individuals which were perceiving 

the food as being more rewarding stopped their dance communication.  

 

The exact magnitude of this change could not be quantified since the total number of 

individuals that were recruited could not be identified. Nevertheless, the number of 

recruits coming to the feeder were more than 20 in all the repeats of these 

experiments (personal observation). Thus, in contrast with the removal experiments, 

mass recruitment had a stronger effect due to the magnitude of the change in nectar 

influx.  

Most experiments on dance communication so far involved catching and removing 

recruits to keep the foragers motivated to dance throughout the experiment (von 

Frisch, 1967). In contrast, under natural conditions, recruitment to any food source 

continues till an appropriate number of foragers are active at that source (Mailleux, 
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Deneubourg, & Detrain, 2003). Otherwise, recruitment would lead to overcrowding 

and diminishing returns on the investment from the colony in that food source 

(Kirchner & Lindauer, 1994; C. Thom, 2003; Corinna Thom, Gilley, & Tautz, 2003; von 

Frisch, 1967). Our results show that the colony can drastically reduce recruitment to 

an over-exploited food source in a rapid manner. In our experiments, there was a 

strong and immediate recruitment to the food source in the beginning of the post-

recruit phase. This could be due to the constraints of the flight cage, which would lead 

to most foragers finding the food source rapidly. Under more natural conditions, this 

process can be expected to be longer, with a gradual increase in recruitment to a new 

food source.  

Interestingly, in the experimental repeat in which foragers did not stop dancing 

immediately, the dynamics of the dances by foragers and recruits were different. 

Initially, most of the dances were by foragers, but they stopped dancing after a short 

duration. However, recruits drastically increased their dance activity later as compared 

to the foragers. They stopped dancing, but after a longer duration (possibly due to the 

larger number of recruits as compared to the foragers). These results suggest that 

there is an inherent negative feedback within foragers dancing for a food source which 

is linked to the increasing recruitment to the food source. Limited and decreasing 

dance activity by an individual is a prominent feature of the waggle dance behaviour 

for nest sites in honey bee swarms (Seeley, 2003; Seeley & Buhrman, 1999). Thus, the 

dance activity of honey bee foragers for a food source and honey bee scouts for a nest 

site are more similar than previously appreciated (Beekman, Gloag, Even, 

Wattanachaiyingchareon, & Oldroyd, 2008). 

Future Directions 

As a next step, similar experiments could be conducted with colonies foraging under 

natural conditions, and not in a flight cage. The results of these experiments would 

provide a more detailed understanding of how the regulation of foraging occurs under 

natural conditions. In addition, the effect of different feeder rewards on the dynamics 

of recruitment should be explored. A higher feeder reward would lead to an increase 

in the motivation of foragers to recruit for longer. At the same time, the increased 
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recruitment to a higher feeder reward might decrease the motivation of foragers 

faster. The interaction between these two factors could be analysed to understand if 

foraging dynamics at any food source remains the same, irrespective of the reward 

offered. 

Another dimension that can be explored is the effect of controlled increase in the 

number of recruits that join the forager group. These experiments would be similar to 

the removal experiments in chapter 3. A different individual identification process 

would be needed to tag individuals and observe them on the same day (as the current 

tagging process involves keeping foragers on ice). The results could indicate if an 

increase in the nectar influx also has an individual specific effect and further, which 

individuals are affected first.  
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Chapter A2 – Followers 

Introduction 

Communication between group members plays a key role in determining the structure 

and dynamics of social groups (Duboscq, Romano, MacIntosh, & Sueur, 2016; Morand-

Ferron, Doligez, Dall, & Reader, 2010; Pruitt & Goodnight, 2014). Individuals in the 

group can obtain information from other members through cues or signals (Chittka & 

Leadbeater, 2005; Conradt & Roper, 2003). Information transfer through interactions 

might be of particular importance in large groups (Kao, Miller, Torney, Hartnett, & 

Couzin, 2014; King & Cowlishaw, 2007) like social insect colonies. In these colonies, 

the private information available to workers is limited to knowledge about stimuli at a 

local scale, and not at the colony level. Workers rely on interactions with other 

workers to obtain information which then modulates their behavioural responses 

(Kocher & Cocroft, 2019; Leonhardt, Menzel, Nehring, & Schmitt, 2016).  

One of the most elaborate modes of communication in social insects is the honey bee 

waggle dance (von Frisch, 1967). Foragers returning from rewarding food sites use the 

waggle dance to recruit other nest mates to these food sites. The waggle dance is a 

unique recruitment mechanism amongst social insects because it encodes spatial 

information about the food source (Jarau & Hrncir, 2009). Each waggle dance consists 

of multiple waggle runs, and the direction and distance information are encoded in 

each run. One waggle run typically contains two phases; a straight walking phase in 

which the dancer waggles its abdomen back and forth (the waggle phase) and a 

circular walking phase which brings the dancer back towards the point of origin of the 

first phase (the return phase). The duration of the waggle phase corresponds to the 

distance to the food source (Seeley, 1995; von Frisch, 1967). In the European honey bee 

species, Apis mellifera, the angle that the waggle phase makes with respect to the 

vertical (gravity) axis corresponds to the direction of the food source from the hive 

with respect to the sun’s azimuth (von Frisch, 1967). Further, the duration of the 

return phase corresponds to the reward value of the food source as perceived by the 

forager (Seeley, Mikheyev, & Pagano, 2000). For food sources very close to the hive, 
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the waggle run becomes nearly circular with a very short waggle phase (Gardner, 

Seeley, & Calderone, 2008). 

Cues and signals from the environment and nest mates can modulate the dance 

behaviour of foragers (De Marco & Farina, 2001; Seeley, 1989; Seeley et al., 2000). 

Interactions with nest mates inform nectar foragers about the colony food stores and 

the nectar influx into the colony (De Marco, 2006; Farina & Núñez, 1991; Grüter & 

Farina, 2009; Seeley, 1989). In addition, interactions with other foragers can also 

provide information about predation and overcrowding (Nieh, 2010; Moushumi Sen 

Sarma, Fuchs, Werber, & Tautz, 2002; Tan et al., 2016; Thom, 2003). An individual 

forager’s dance activity is modulated by information from these interactions along 

with the perceived reward value of the food source (George & Brockmann, 2019). This 

in turn drives recruitment to each food source proportional to its relative reward value 

for the colony (Seeley & Towne, 1992). Thus, the waggle dance acts as the primary 

regulatory mechanism of the colony’s recruitment in addition to its role in 

navigational information transfer. 

Although extensive work has been done on the honey bee waggle dance behaviour, the 

exact mechanism underlying the spatial information transfer has remained elusive. 

There are currently two major hypotheses regarding how dance followers obtain 

meaningful spatial information from the dancer. The first (“tactile hypothesis”) posits 

that dance followers obtain information from cues that a dancer produces. Followers 

can obtain information from mechanosensory cues associated with the air flow caused 

by a dancer’s vibrating wings (Michelsen, 2003; Michelsen, Kirchner, & Lindauer, 

1986). Tactile cues associated with physical contact between the dancer and follower 

could also be a viable mode of information transfer (Božič & Valentinčič, 1991; Gil & 

De Marco, 2010). The second hypothesis states that followers obtain information from 

dancers by physically following behind the dancer (Judd, 1994). Followers thus use 

information from their own body positions to estimate the direction and distance of 

the food source being advertised (“follow hypothesis”). 

So far, there has been limited evidence in support of each of the two hypotheses (Gil & 

De Marco, 2010; Judd, 1994). The major problem is that, recruits can follow multiple 

dances before flying out to a food source (Seeley & Towne, 1992). A carefully 
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controlled experimental paradigm is required to distinguish between the two 

hypotheses. This would involve a limited number of foragers from a naturally foraging 

colony trained to, and dancing for, multiple novel food source. Under such an 

experimental condition, a detailed quantification of the dances followed by recruits 

preceding their first visit to the novel food sources would provide a greater 

understanding of the mechanism behind the spatial information transfer.  

Previous studies have also been mostly limited to observations of Apis mellifera and 

have rarely focussed on the other Apis species, even though the dance behaviour is a 

common recruitment mechanism used by all extant species in the whole genus (Fred 

C. Dyer, 2002). But there are important differences in some of the cues and signals 

present in the dances of the various species (Fred C. Dyer, 2002; I’Anson Price & 

Grüter, 2015; Towne, 1985). The dwarf honey bees (like A. florea) dance on a 

horizontal surface with conspicuous visual cues and no auditory cues associated with 

the waggle dance (F. C. Dyer, 1985). In contrast, the giant honey bees (like A. dorsata 

and A. laboriosa) usually dance on the vertical surface of the bee curtain (Towne, 

1985). The dances of A. dorsata also contain auditory cues and are more similar to 

dances by cavity nesting species (Kirchner & Dreller, 1993). Like A. mellifera, other 

cavity nesting species (A. cerana and A. nigoracincta) also perform waggle dances in 

the dark which are accompanied by auditory cues to help the dance followers identify 

dancing bees (Towne, 1985). However, it is very likely that, even though cues and 

signals involved in the waggle dance differ amongst species’, the mechanism of 

information transfer would likely remain the same (F. C. Dyer & Seeley, 1991; M Sen 

Sarma, Esch, & Tautz, 2004). 

In this study, we propose a comparative approach to understand the mechanism of 

spatial information transfer in the waggle dance behaviour of honey bees. Comparing 

the spatial orientations of dance followers across species may provide supporting 

evidence for either of the two proposed hypotheses. If followers arrange themselves 

towards the side of the dancer, then it is likely that they use tactile cues (tactile 

hypothesis) to obtain information about the food source. In contrast, if followers 

orient themselves behind the dancer, they are more likely using their own body 

orientation (follow hypothesis) to determine the spatial position of the food source. 
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Materials and Methods 

We observed the behaviour of waggle dance followers as part of a larger study on the 

effect of varying optic flow environments on dance dialects of different species in the 

genus Apis (Kohl et al., unpublished data). 

Colonies 

Experiments were done with commercially obtained colonies of Apis cerana and wild 

colonies of Apis florea and Apis dorsata. The A. cerana colony was obtained from 

Karnataka Apiaries, Bangalore. For A. florea, we obtained a colony which was nesting 

on the National Centre for Biological Sciences (NCBS) campus, Bangalore. For A. 

dorsata, we observed a colony which had made a nest in the Naik Bhavan building 

adjacent to our experimental location in the University of Agricultural Sciences 

(UAS), Gandhi Krishi Vignana Kendra (GKVK), Bangalore. All the colonies we 

observed were healthy colonies, with an adequate number of brood cells. 

Experimental Location 

Our experiments were done in the Botanical Garden at GKVK (latitude: 13.07, 

longitude: 77.57). The garden covers an area of 26 hectares and is home to around 

2000 plant species including trees and shrubs. This provided dense vegetation cover 

and hence good optic flow for the foragers (Fig A2.1 a). We obtained a straight line 

transect of at least 500m from the colony location to train foragers along. 

Colony Preparation 

Apis florea 

Our A. florea colony was a wild colony located in a tree on the NCBS campus. We 

shifted this colony to the first experimental site, the Botanical Garden. First, we 

carefully cut the branch on which the colony rested. We then transported the colony 

inside a net to the botanical garden. Finally, at the botanical garden, we transferred it 

to a wooden box, with metal wires such that the branches could be held by the metal 

wires (Fig A2.1 b). The colony thus was suspended in between the wooden box, which 

had one opening at the top. This opening was used to record the activity on the 
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crown area of the colony, where most of the recruitment activity happens (F. C. Dyer, 

1985). 

 

Figure A2.1 

 

Figure A2.1: (a) A photo of the botanical garden in GKVK, Bangalore, where the experiments were 

performed with all the 3 species. This image is at distance of 200m from the hive in the transect used 

for both A. florea and A. cerana. (b) The box in which A. florea colonies were kept during the feeder 

training and dance observations. Foragers utilised the crown area of the comb as the dance floor for 

recruitment of the nest mates. (c) The feeder box used to train A. dorsata foragers. (d) The observation 

hive used for housing the A. cerana colony (picture courtesy Patrick Kohl). The observation hive had a 

glass wall on the side towards the entrance, which allowed us to record dances happening in the first 

frame (which acted as the dance floor). 
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Apis dorsata 

We found a naturally nesting A. dorsata colony on a building adjacent to the entrance 

of the botanical garden. We used a feeder box (Fig. A2.1 c) to train foragers from the 

colony to the ground first, and then along the transect.  

Apis cerana 

We obtained a 4 frame A. cerana colony which we then transferred to the botanical 

garden. The colony was housed in a specially constructed box, with glass walls on one 

side (Fig. A2.1 d). This allowed us to observe the waggle dances and the dance 

follower behaviour in a non-invasive manner and without having to move the colony 

into a traditional 2 frame vertical observation hive.  

Distance training experiments 

Apis florea and Apis cerana 

We used a similar protocol for distance training in A. florea and A. cerana. We first 

placed an artificial feeder (which consisted of a feeder plate and stand) near the colony 

location and filled it with 1-1.5 M sucrose solution scented with star anise (Illicium 

verum) extract. We then used a stick dipped in this solution and brought it near the 

colony (towards the crown area for A. florea and towards the colony box entrance for 

A. cerana) to attract foragers. Once some foragers climbed on to the stick, we would 

then transfer them carefully to the artificial feeder. This process was repeated multiple 

times till 5-10 foragers started coming to the feeder on their own. At this point, the 

feeder was shifted away from the hive, along the transect, in small steps of 5m. When 

the feeder was at 25m, we individually paint marked foragers at the feeder using Uni 

POSCA Paint markers (Uni Mitsubishi Pencil, UK). Once all foragers coming to the 

feeder were marked, the feeder was shifted further in small steps. At 100m, we 

recorded dance activity using a Sony HDR CX260V Handycam (Sony Corporation, 

Tokyo) to cover the dance floor area (crown area in A. florea and the frame facing the 

glass wall in the box containing A. cerana). The videos were recorded at 1080p and 50 

frames per second. During dance activity recordings, one observer was always present 

at the feeder, noting down the number of trips made by each marked forager. After an 

hour of observations, the feeder was shifted to the next distance and recordings were 
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done in a similar manner. We recorded dance activity at 100m, 200m, 300m, 400m 

and 500m for both species. 

The distance training experiments were done during a period of relative food scarcity, 

such that foragers from both species were attracted to the sucrose solution that we 

provided. We adjusted the sucrose concentration at our artificial feeder between 1 and 

1.5M depending on the number of foragers visiting our food source. 

Apis dorsata 

The training of A. dorsata foragers initially involved a different protocol. Since the 

colony was on the side of a building, we could not keep an artificial feeder nearby and 

use a stick dipped in sucrose to train foragers. Instead, we first got foragers to come to 

a long rod with a piece of comb filled with sucrose solution which was kept next to the 

bee curtain. We then transferred these foragers carefully into a feeder box. Once 

foragers got inside the box, it was closed, and the box along with the foragers inside 

were transported to the ground level. Here, the box was placed in an artificial feeder 

set up and foragers were released. This process was repeated till foragers came to the 

feeder on their own. After this, the same protocol of paint marking, feeder shifts, and 

video recordings were done as described earlier. We recorded the dance activity of A. 

dorsata foragers at distances of 100m, 200m, 300m and 400m. Since we recorded 

dances for the A. dorsata colony during a time of plentiful flowering, we had to use 

higher concentrations of sucrose solution (up to 2M) to get foragers to come to the 

feeder. But we could not get foragers to come to a feeder further than 400m from the 

hive. The transect used for A. dorsata feeder training was in the opposite direction of 

the ones used for A. florea and A. cerana since the colony had nested on a building at 

the opposite end of the botanical garden. 

Video Analysis 

To analyse follower behaviour, individuals were first shortlisted based on whether they 

were active at the feeder at multiple distances.  We then analysed each waggle run in 

the dances by these individuals to determine the duration of the waggle phase. The 

videos were observed frame-by-frame in Virtual Dub 1.10.4 
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(http://www.virtualdub.org). The first frame in which a focal bee clearly moved its 

abdomen laterally or dorsoventrally was defined as the start of the waggle run in that 

circuit. The frame in which the bee stopped waggling its abdomen and started turning 

to the left or right was defined as the end of the waggle run. The time between the 

above frames is the duration of the waggle phase. 

Follower Behaviour 

We analysed dance follower behaviour for each waggle run in each waggle dance and 

did not observe the behaviour of dance attendants. Dance followers were defined as 

those bees which positioned themselves within one bee length of the dancer while we 

excluded dance attendants, who were farther away and not following the dancer 

(Božič & Valentinčič, 1991). In each run, we focussed on 3 phases (time-points); the 

start, middle and end, based on the waggle run duration we had calculated (Fig A2.2 

a). This was done to look at whether there was a change in the number of followers in 

the various zones as the run progressed, which might indicate that followers were 

shifting to a preferable zone or maintaining their positions (Gil & De Marco, 2010). 

The number of follower present around the dancing forager was counted in each of 

the frames. We then divided these followers into 3 groups, based on the position they 

occupied around the dancer (Gil & De Marco, 2010). Followers positioned around the 

head region were grouped into the anterior zone, followers occupying positions near 

the thorax and abdomen on both sides were grouped into the lateral zone and finally 

followers positioned behind the abdomen were grouped into the posterior zone (Fig 

A2.2 b).  

The body angles of the follower in each of the positions with respect to the angle of 

the dancer were also quantified. We used a free software, OnScreenProtractor v0.3 

(http://osprotractor.sourceforge.net), to do this manually. We first used the program 

to make a vector representing the dancer, pointing in the direction of the dancer’s 

head, away from its abdomen. We then made a similar vector for the follower, but 

from its head to abdomen. Finally, the angle subtended by the follower vector with 

respect to the dancer vector in the clockwise direction was quantified (Fig A2.2 c). 
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Figure A2.2 

 

Figure A2.2: Schematic of the analysis done on the dance followers. (a) Each waggle run was divided 

into 3 phases, the start, middle and end and the number of followers around the dancer was quantified. 

(b) Followers around the dancer were grouped into 3 zones (Anterior, Lateral and Posterior) based on 

the position they occupied around the dancer (area of the zones in the figure are representative). (c) 

The orientations of the followers were then quantified by obtaining the angle made by a vector 

representing the follower with respect to the vector representing the dancer in the clockwise direction. 

 

In all, we calculated the position and body angles of 1024 followers (from 99 waggle 

runs from 14 waggle dances) in A. florea, 1363 followers (from 126 waggle runs from 7 

waggle dances) in A. dorsata and 787 followers (from 100 waggle runs from 10 waggle 

dances) in A. cerana (Table A2.1). 

 

Table A2.1 

Distance 

(m) 

Apis florea Apis dorsata Apis cerana 

Bees Dances Waggle 

Runs 

Bees Dances Waggle 

Runs 

Bees Dances Waggle 

Runs 

100 2 3 20 1 1 53 2 3 33 

200 1 2 14 2 2 27 1 2 21 

300 2 3 19 2 2 28 2 2 14 

400 3 3 23 1 2 18 1 1 8 

500 2 3 23 - - - 2 2 24 

 

Table A2.1: List of bees, dances and waggle runs analysed for each of the 3 Apis species in this study. 



 Chapter A2 – Followers | Materials and Methods 
 

216 
 

Statistical Analysis 

Number of Followers 

We used a model comparison approach to analyse the number of followers. We built 

generalised linear mixed models with a Poisson error distribution as our response 

variable (number of followers) was count data. In each model, the bee ID was a 

random effect. In total, 27 models were built (Table A2.2) with a combination of our 4 

predictors: i) zone of dance follower (a categorical variable of 3 levels; Anterior, Lateral 

and Posterior), ii) phase of waggle run (a categorical variable of 3 levels; Start, Middle 

and End), iii) species (a categorical variable of 3 levels; A. florea, A. cerana and A. 

dorsata) and iv) distance (a continuous variable which was scaled). We then compared 

the models based on their AIC values and shortlisted the models within a cut-off of 

0.95 cumulative Akaike (Wagenmakers & Farrell, 2004). We then obtained the list of 

predictors, effect sizes and confidence intervals from the model. Only those predictors 

which had confidence intervals not overlapping zero were considered to have a 

significant effect on the number of followers. We also did multiple comparisons (with 

Tukey corrections for multiple comparisons) of the estimated mean number of 

followers. We focussed on: i) comparison between the 3 waggle run phases, ii) 

comparisons between the different zones within each species and iii) comparisons 

between the same zones across the 3 species. We did these comparisons as in our 

shortlisted model, the important predictors were the waggle run phase and an 

interaction between the zone of the follower and the species. 

Table A2.2  

Model 

Number 

Zone Waggle Run 

Phase 

Species Distance 

1 +    

2  +   

3   +  

4    + 

5 + +   

6 +  +  

7 +   + 

8  + +  

9  +  + 
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10   + + 

11 * *   

12 *  *  

13 *   * 

14  * *  

15  *  * 

16   * * 

17 + + +  

18 * * +  

19 * + *  

20 + * *  

21 + + + + 

22 * * + + 

23 * + * + 

24 * + + * 

25 + * * + 

26 + * + * 

27 + + * * 

 

Table A2.2: List of models used in the model selection and model averaging. All models had the number 

of followers as the response and were generalized linear mixed models with the bee ID as a random 

effect and a Poisson error distribution. The predictors present in each model are either the zone of the 

follower, the waggle run phase, the species, the distance or a combination thereof. A + indicates that 

the predictor was encoded in the model without an interaction term, whereas a * indicates that two 

predictors in the model were encoded with an interaction term between them. Only 2-way interactions 

were included in the models. 

 

Orientation of followers 

We used a projected normal (PN) circular generalized linear model to analyse the data 

on the angles of the followers (Cremers & Klugkist, 2018). The GLM fits circular data 

(follower angles) to a PN distribution. We fit 3 predictors in the model: i) phase of 

waggle run (a categorical variable of 3 levels; Start, Middle and End), ii) species (a 

categorical variable of 3 levels; A. florea, A. cerana and A. dorsata) and iii) distance (a 

continuous variable). The PN GLM is a Bayesian model with a Markov Chain Monte 

Carlo sampler (Gelman et al., 2013). The sampler was run for 10000 iterations with a 

burn-in phase of 1000 iterations. Estimates obtained from every 3 runs were used to 

obtain the posterior distribution. We used the 95% Highest Posterior Density (HPD) 
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interval to determine if the circular means of any of the levels of these factors were 

significantly different from each other. 

All the models and the plots were made in R (R Core Team, 2018) using the RStudio 

IDE (RStudio Team, 2016). The GLMMs were fit using the lme4 package (Bates, 

Mächler, Bolker, & Walker, 2015), model selection and averaging were done using the 

MuMIn package (Barton, 2017) and the model assumptions were checked using the 

DHARMa package (Florian Hartig, 2018). Multiple comparisons were done using the 

emmeans package (Lenth, 2019). For fitting the PN GLM, the bpnreg package was 

used (Cremers, 2018). 

Results 

Number of Followers 

Model comparisons between all the GLMMs revealed that there was only one model at 

the 0.95 cut-off level for cumulative sum of Akaike weights (Table A2.3). In this 

model, the important predictors were the waggle run phase and an interaction 

between the species and the zone of the follower (Table A2.4). 

 

Table A2.3 

Model 

Number 

Degrees of 

Freedom 

Log 

Likelihood 

AICc Delta AICc Weight 

19 12 -3711.613 7447.3 0.00 0.721 

23 13 -3711.594 7449.3 1.98 0.268 

12 10 -3718.003 7456.1 8.75 0.009 

18 12 -3718.969 7462.0 14.71 0.000 

 

Table A2.3: List of the top four models based on their AICc values for the analysis on the number of 

followers. For each model, the model number (see Table A2.2 for predictors), the degrees of freedom, 

log likelihood, AICc, delta AICc and the weight is provided. Only model 19 (highlighted in italics) was 

present in the final shortlist of models based on a cut-off value of 0.95 of the cumulative sum of 

weights. 
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Table A2.4 

Predictors Effect Size CI p value 

Zone* Waggle Run 

Phase 

Species* 

Anterior Start A. florea 0.833 0.715 – 0.952 < 0.001 

Lateral Start A. florea 0.107 -0.051 – -0.051 0.184 

Posterior Start A. florea 0.483 0.311 – 0.311 < 0.001 

Anterior Start A. dorsata 0.216 0.062 – 0.062 0.006 

Anterior Start A. cerana -0.192 -0.337 – -0.047 0.009 

Anterior Middle A. florea 0.133 0.042 – 0.223 0.004 

Anterior End A. florea 0.153 0.062 – 0.245 0.001 

Lateral Start A. dorsata 0.176 -0.053 – 0.404 0.131 

Posterior Start A. dorsata -0.405 -0.640 – -0.171 0.001 

Lateral Start A. cerana 0.065 -0.149 – 0.278 0.553 

Posterior Start A. cerana -0.233 -0.459 – -0.006 0.044 

 

Table A2.4: List of predictors in the shortlisted model 19 for the analysis of the number of followers. For 

each predictor level in the final model, the effect size, confidence interval and p value associated with 

the effect size are given. The predictors marked with an * were present as an interaction term in the 

model. Hence the final model contained effect sizes of all combinations of levels of the 2 predictors (3 

zones x 3 species = 9 combinations) as well as effect sizes of each level of the waggle run phase (3 

levels). Effect sizes with confidence intervals not overlapping zero are highlighted in italics. 

 

Effect of waggle run phase 

The waggle run phase had an effect on the number of followers, but this effect was the 

same across the different zones, species and distance (Table A2.4, Fig. A2.3 and A2.4). 

There were fewer followers in the start of the waggle run as compared to the middle 

(Start vs Middle: difference estimate = -0.133, z ratio = -2.872, p = 0.011) and end phase 

(Start vs End: difference estimate = -0.53, z ratio = -3.292, p = 0.003). However, the 

number of followers in the middle and end phase were not significantly different 

(Middle vs End: difference estimate = -0.021, z ratio = -0.432, p = 0.902). 

 



 Chapter A2 – Followers | Results 
 

220 
 

 

Effect of species and zone 

The species and the zone around the dancer had an interactive effect on the number 

of followers (Table A2.4, Fig. A2.3 and A2.4) and hence their main effects are not 

considered. Within each species, there were differences in the number of followers in 

the different zones. In A. florea, there were more followers in the posterior zone as 

compared to both the anterior and the lateral zone (Anterior vs Posterior: difference 

estimate = -0.483, z ratio = -5.507, p < 0.001; Lateral vs Posterior: difference estimate 

= -0.376, z ratio = -4.188, p < 0.001). The number of followers in the anterior and 

lateral zone were similar (Anterior vs Lateral: difference estimate = -0.107, z ratio = -

1.328, p = 0.379).  

In A. dorsata, there were more followers in the lateral zone as compared to both the 

anterior and the posterior zone (Anterior vs Lateral: difference estimate = -0.283, z 

ratio = -3.348, p = 0.002; Lateral vs Posterior: difference estimate = 0.205, z ratio = 

2.379, p = 0.046). The number of followers in the anterior and posterior zone were 

similar (Anterior vs Posterior: difference estimate = -0.078, z ratio = -0.957, p = 

0.604).  

In A. cerana, the number of followers were similar between the Anterior and Lateral 

zone (Anterior vs Lateral: difference estimate = -0.172, z ratio = -2.328, p = 0.052) and 

the Lateral and Posterior zone (Lateral vs Posterior: difference estimate = -0.079, z 

ratio = -0.998, p = 0.578). However, the number of followers in the Posterior zone 

were higher than in the Anterior zone (Anterior vs Posterior: difference estimate = -

0.250, z ratio = -3.321, p = 0.003). 

In each zone there were differences in the number of followers across the species. In 

the Anterior zone, A. dorsata had higher number of followers than both A. florea and 

A. cerana (A. florea vs A. dorsata: difference estimate = -0.216, z ratio = -2.748, p = 

0.017; A. dorsata vs A. cerana: difference estimate = 0.409, z ratio = 5.472, p < 0.001). 

A. florea had more followers than A. cerana in the Anterior zone (difference estimate = 

0.192, z ratio = 2.600, p = 0.025).  
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Figure A2.3 

 

Figure A2.3: Boxplots (with the median and the quartile ranges) representing the number of followers 

present in each zone over the 3 phases of the waggle run for all 3 species. Each circle represents the 

number of followers present in one waggle run. The boxplots are filled according to the species, with 

blue representing A. florea, orange representing A. dorsata and green representing A. cerana. 
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Figure A2.4 

 

Figure A2.4: Estimated number of followers and the 95% confidence intervals (circles and error bars) 

for the different predictors present in the final shortlisted model (model 19, see Table A2.2 and A2.3). 

(a) Species and the zone of the follower had an interactive effect on the number of followers. The 

general pattern of increasing number of followers from Anterior to Posterior of the dancer was the seen 

in both A. florea (blue) and A. cerana (green). However, in A. dorsata (orange) more followers were 

present in the lateral zone. The alphabets above each circle represents results from the multiple 

comparisons done (estimates with different alphabets were significantly different from each other at the 

p < 0.05 level). Upper case alphabets represent differences in the number of followers present in the 

same zone across species. Lower case alphabets represent differences in the number of followers present 

in the different zones within each species. (b) The waggle run phase had an effect on the number of 

followers. The number of followers initially increased but then saturated as the waggle run progressed 

(different roman numerals above the estimates represent significant differences at the p < 0.05 level). 

 

In the Lateral zone also, A. dorsata had higher number of followers than both A. florea 

and A. cerana (A. florea vs A. dorsata: difference estimate = -0.392, z ratio = -4.563, p < 
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0.001; A. dorsata vs A. cerana: difference estimate = 0.520, z ratio = 6.226, p < 0.001). 

However, both A. florea and A. cerana had similar number of followers in this zone 

(difference estimate = 0.128, z ratio = 1,591, p = 0.249).  

In the Posterior zone, A. dorsata had similar number of followers as A. florea 

(difference estimate = 0.189, z ratio = 2.100, p = 0.090) and but more followers than A. 

cerana (difference estimate = 0.236, z ratio = 2.882, p = 0.011). A. florea had more 

followers than A. cerana in this zone (difference estimate = 0.425, z ratio = 4.775, p < 

0.001). 

Effect of distance 

Distance had no effect on the number of followers (Fig. A2.5). Distance was not a 

predictor that was present in the short-listed models. Thus, the main effects of the 

waggle run phase and the interactive effects of zone and species were similar across all 

distances. 

Orientation of followers 

The circular means of the orientation of the followers were not affected by either of 

our 3 predictors (Table A2.5, Fig. A2.6 and A2.7). The HPD intervals of the circular 

means were similar across all phases of the waggle run (Table A2.5 and Fig. A2.7). The 

HPD intervals of the circular means overlapped for all 3 species (Table A2.5 and Fig. 

A2.7).  

 

Table A2.5 

Predictors Mean Mode SD LB HPD UB HPD 

Waggle 

Run 

Phase 

Species 

Start A. florea 65.3991 72.29328 95.45285 -115.486 211.0482 

Middle A. florea 39.2624 45.82657 76.07739 -107.925 200.3821 

End A. florea 55.64611 56.72581 60.74465 -81.4719 190.5595 

Start A. dorsata 136.8125 139.1147 29.44819 75.82887 193.3142 
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Start A. cerana -30.7599 -42.0799 86.10036 -172.861 131.9149 

Middle A. dorsata 126.8412 126.8954 32.46732 59.05223 192.6481 

Middle A. cerana -14.5129 -20.2491 67.69122 -169.829 121.4971 

End A. dorsata 118.7927 113.1987 26.07451 66.15804 169.251 

End A. cerana 13.27277 28.43403 66.18634 -135.017 152.2358 

 

Table A2.5: Results of the categorical predictors in projected normal GLM model with the follower 

angles as the response variable. Posterior estimates of the circular means of the phase difference are 

provided, along with the mode, standard deviation and the lower and upper bound of the 95% highest 

posterior density interval. None of the circular means were significantly different from each other, as 

the bounds around the mean overlapped in all 9 combinations of the 2 categorical predictors. 

 

The intervals around the slope of the relationship between distance and the projected 

normal distribution of the angles also overlapped 0, indicating that there was no 

change in the circular means of the followers with distance (mean of the average slope 

posterior samples of the circular regression = 7.859, 95% HPD interval = -5.998 – 

8.064). 

Discussion 

The results from our study revealed that there were differences between how the 

dance followers positioned themselves amongst the 3 species of Apis. In A. florea more 

followers positioned themselves behind the dancer, whereas in A. dorsata, more 

followers positioned themselves to the sides of the dancer (see Fig. A2.4). In A. cerana 

there were no significant differences between the number of followers who positioned 

themselves to the side and those who positioned themselves behind the dancer. This 

trend was the same across all phases of the waggle run and across all distances. There 

were also less followers in the beginning and more followers towards the middle and 

the end of the waggle run across all species. But the mean orientation of the dance 

followers was not different across species, waggle run phase or distance. 
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Figure A2.5 

 

Figure A2.5: Correlation between distance and the number of followers in all 3 species. The line 

represents the best fitting linear correlation with each circle representing data from one run. The lines 

and circles are coloured according to the species, with blue for A. florea, orange for A. dorsata and green 

for A. cerana. There was no effect of distance on the number of followers in a waggle run in either of the 

3 species, as can be seen from the horizontal lines. 

 

Studies on the honey bee waggle dance, and specifically on the mechanism of 

information, transfer have focused on A. mellifera so far (Gil & De Marco, 2010; 

Landgraf et al., 2018; Seeley, 1995; von Frisch, 1967). However, various aspects of 
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waggle dance differs amongst the various species in the genus Apis (F. C. Dyer & 

Seeley, 1991; Fred C. Dyer, 2002; I’Anson Price & Grüter, 2015; Towne, 1985). The 

dwarf honey bees (like A. florea) and the giant honey bees (like A. dorsata) dance in 

the open and have access to celestial cues while dancing, whereas the cavity nesting 

species (like A. cerana and A. mellifera) dance in the dark (Fred C. Dyer, 2002). 

However, the dwarf honey bees dance on a horizontal or sloped surface, whereas the 

giant honey bees and the cavity nesting bees dance on a vertical surface (Fred C. Dyer, 

2002). The cues and signals associated with the dance are also different between the 

various species. For example, in A. mellifera, the dancer vibrates its wings during the 

waggle run, producing an air flow (Michelsen, 2003) which can be sensed by followers 

(Wachtler, Ikeno, Kumaraswamy, Ai, & Kai, 2017). In contrast, A. florea foragers do 

not vibrate their wings during the waggle phase (Towne, 1985) and hence these cues 

are absent in the dance.  

Our results, taken together with previous work on A. mellifera (Gil & De Marco, 2010; 

Rohrseitz & Tautz, 1999; Tanner & Visscher, 2008) point to the importance of tactile 

cues experienced by foragers, who positioned themselves laterally with respect to the 

dancer, for the spatial information transfer in both the giant and cavity nesting honey 

bees. Dance followers who are laterally positioned experience a regular pattern of 

antennal deflections which correlate strongly with the number of abdomen waggles 

(Gil & De Marco, 2010; Michelsen, 2012; Rohrseitz & Tautz, 1999). Since the frequency 

of waggling of the abdomen is physically constrained to be similar amongst bees of the 

same species (Hrncir, Maia-Silva, Mc Cabe, & Farina, 2011), followers can use this to 

estimate the waggle phase duration (Kohl et al., unpublished data). At the same time, 

they can obtain the orientation of the waggle run by using their own body position 

with respect to gravity as a reference. The Johnston’s organ may play a vital role in 

extracting information about the direction of the waggle phase and hence the 

direction of the food source (Brockmann & Robinson, 2007). 
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Figure A2.6 

 

Figure A2.6: A circular histogram of the body orientation of the followers with respect to the dancer. 

Each bar represents the number of followers in a bin width of 5°. A follower at 0° is facing the dancer 

and a follower at 180° is exactly behind the dancer. The bars are coloured based on the zones occupied 

by the follower with pink for followers in the Anterior zone, purple for followers in the Lateral zone and 

cyan for followers in the Posterior zone. 
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Figure A2.7 

 

Figure A2.7: The circular means of the follower orientation in the different waggle run phases in each of 

the 3 species. The means are provided along with the 95% highest posterior density (HPD) interval 

(circles and error bars). The upper and lower bounds of the 95% HPD interval overlapped for all 

conditions, indicating that there were no differences in the circular means in the different phases or the 

different species. 

 

In contrast, in A. florea, following the dance is the most prominent behavioural 

pattern of potential recruits. The nature of the waggle dance of A. florea might provide 

an explanation for this. A. florea foragers dance on a horizontal surface and more 

importantly, dance in the direction of the food source (Beekman, Makinson, 
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Couvillon, Preece, & Schaerf, 2015; F. C. Dyer, 1985). In addition, A. florea foragers 

present a strong visual cue by lifting their abdomen and shaking it vertically during 

the waggle run (Towne, 1985). Since A. florea is open nesting, this has been 

hypothesised to attract recruits to a dancing forager, similar to the sound produced by 

the vibrating wings of dancers in cavity nesting species (I’Anson Price & Grüter, 2015; 

Towne, 1985). This strong cue might cause potential recruits to make a direct 

approach towards the abdomen of the dancer. Thus, by positioning themselves behind 

the dancer, followers directly get to know the direction to fly out to and there is no 

need to transpose any direction information.   

Across all 3 species, the number of dance followers initially increased and then 

remained similar as the phase of the waggle run changed. This indicates that potential 

recruits initiated the process of following the waggle run near the beginning of the 

run. This is expected given that the whole run duration encodes the correct distance 

information. We did not find any interaction between the waggle run phase and the 

zone of the follower, implying that the number of followers in the different zones were 

similar across the phases of the waggle run. In addition, we found no difference in the 

circular means of the follower orientation between the different phases of the waggle 

run, suggesting that there was very little turnover of followers across the different 

zones as the waggle run progressed. These results are in contrast with an earlier study 

by Gil and De Marco (2010) which showed that the percentage of followers in the 

different zones changed from the beginning to the end of the waggle run. However, 

their study did not look at whether the number of followers increased as the waggle 

run progresses. We believe that an increase in the number of followers (as seen in our 

results) would explain the change in proportions seen in their study.  

Gil and De Marco (2010) further showed that the number of followers in A. mellifera 

increased with distance, although this was only apparent at the highest distance. In 

contrast, distance had no effect on the number of followers present in a waggle run 

across all 3 species in our study. We also found that the circular means of the follower 

orientation did not change with distance. The discrepancy between the two studies 

might be due to a statistical issue as the previous study relied on an ANOVA to test 
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differences, whereas we used a more appropriate model with a Poisson error 

distribution for the count data (McCullagh & Nelder, 1989; O’Hara & Kotze, 2010).  

The behavioural responses of A. cerana followers however does not fit into the pattern 

of expected responses for either of the two hypotheses. We are unsure why the cavity 

nesting A. cerana  followers positioned themselves equally behind and to the side of 

the dancer, whereas followers in the closely related A. mellifera positioned themselves 

to the side (Gil & De Marco, 2010; Tanner & Visscher, 2008). It could be possible that 

followers could obtain some relevant information from orienting themselves to the 

side as well as behind the dancer. This indicates that the body orientation of the dance 

followers might not matter as much as the tactile cues, like antennal contacts that 

they experience (Tanner & Visscher, 2008). We could not record and analyse the 

antennal contacts between the dancers and the followers. Further, our study does not 

answer whether the spatial information is transferred to the dance follower (Judd, 

1994; Tanner & Visscher, 2008). Combining detailed observations of the follower 

behaviour using a high-speed camera with tracking of their foraging trips (Menzel et 

al., 2011) is needed to gain a more detailed understanding of the mechanism 

underlying spatial information transfer in the waggle dance.  

In conclusion, our study provides the first comparative observations of the dance 

followers across 3 species in the Apis genus. Our results suggest that the information 

transfer in the genus Apis is dependent on the ‘complexity’ of the information content 

present in the dance itself. In the simpler dances in A. florea, where no transposition 

of the direction information to another reference was present, followers positioned 

themselves behind the dancer. This could possibly help them to directly obtain the 

direction to fly out to. In the more complex dances of A. dorsata and A. mellifera, 

where the direction information is transpositioned with reference to the gravity axis in 

the dance, followers positioned themselves to the side of the dancer. This would 

presumably help the followers obtain direction and distance information from 

antennal contacts with the dancers abdomen (Gil & De Marco, 2010; Rohrseitz & 

Tautz, 1999). However, even in the species with the more ‘complex’ dance, followers 

could possibly obtain some information from positioning themselves behind the 

dancer. Further comparative experiments on the Asian honey bees are needed to 
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understand the differences in the mechanism of spatial information transfer between 

the various species. 

Future Directions 

The most important next step would be to obtain data from other colonies of the 3 

species used. Currently, the experimental design and analysis in this chapter closely 

follows earlier work in A. mellifera (Gil & De Marco, 2010; Judd, 1994; Rohrseitz & 

Tautz, 1999). In all these studies, only dancers and followers from one colony were 

observed. The underlying assumption was that the highly stereotypical nature of the 

waggle dance would mean that dancers and followers from any colony of A. mellifera 

would behave similarly (at a qualitative level). However, direct comparisons between 

followers from multiple colonies would be needed to conclusively establish the 

veracity of this assumption in the Asian honey bees. This would be relatively easy for 

both A. florea and A. cerana, as colonies from these species can be transported and 

observed in the same location. However, a repeat of these experiments would be more 

difficult in the case of A. dorsata and would rely on a colony arriving back to the same 

building. 

The next step would be to determine which followers actually obtain the spatial 

information from the dancer. This would require multiple trap feeders set up in an arc 

around the feeder that is being advertised (Tanner & Visscher, 2008). In addition, 

most of the potential recruits in the colony should be marked to correlate the position 

of the follower around the dancer with the feeder it flew to. This could help provide 

more conclusive evidence of the mechanism of the spatial information transfer in the 

different Asian honey bee species. 
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